Zweite Ableitung und Wendepunkte
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lerntext zum Thema Zweite Ableitung und Wendepunkte
Was ist die zweite Ableitung?
Die Bildung der ersten Ableitung einer Funktion ist bereits bekannt. Diese wird mit bezeichnet, nach verschiedenen Regeln gebildet und ist ebenfalls eine Funktion.
Aus diesem Grund kann man von dieser Funktion auch wieder eine Ableitung bilden: Es wird also die Ableitung der ursprünglichen Funktion abgeleitet. Diese sogenannte „zweite Ableitung“ wäre korrekt ausgedrückt – vereinfacht nennt man sie aber (man sagt „f zwei Strich von “). Da sich hier wieder eine Funktion ergibt, könnte man weitere Ableitungen bilden, die dann entsprechend mit etc. bezeichnet werden.
Wie wird die zweite Ableitung gebildet?
Die zweite Ableitung wird wie die erste Ableitung abhängig von der vorliegenden Funktion anhand der Ableitungsregeln (u. a. Potenzregel, Faktorregel und Summenregel) bestimmt.
Berechnung der zweiten Ableitung – Beispiel
Was bedeutet die zweite Ableitung?
Die erste Ableitung bezeichnet die Steigung der ursprünglichen Funktion. Bildet man nun die Ableitung der Ableitung, muss dies im Folgeschluss bedeuten, dass mit der zweiten Ableitung die Steigung der ersten Ableitung – also die Steigung der Steigung – bestimmt wird. Doch was heißt das konkret?
Die zweite Ableitung hilft, das Krümmungsverhalten der Funktion zu untersuchen, denn sie gibt die Änderung der Steigung an. Mit der Berechnung von kann bestimmt werden, ob es sich um eine Rechtskrümmung oder eine Linkskrümmung handelt. Ebenfalls kann man mit der zweiten Ableitung – genau wie mit der ersten Ableitung – spezielle, charakteristische Punkte der Funktion bestimmen.
Wendepunkte
Um diese charakteristischen Punkte zu erklären, muss man kurz wiederholen, welche charakteristischen Stellen die erste Ableitung angeben kann. Zur Erinnerung: Setzt man die erste Ableitung gleich null (), bestimmt man die Stellen der Funktion , an denen die Steigung den Wert hat. Daraus ergeben sich dann die sogenannten Maxima und Minima (also die Extrempunkte) der Funktion.
Setzt man nun die zweite Ableitung gleich null (), erhält man die Stellen, an denen die Steigung ihre Extrempunkte hat – hier ist also die Steigung entweder maximal oder minimal. Diese Maxima und Minima der Steigung sind die sogenannten Wendepunkte der Funktion ), an denen sich die Krümmung der Funktion ändert. Entweder geht der Graph der Funktion an einem Wendepunkt von einer Linkskrümmung in eine Rechtskrümmung über oder andersherum.
Für das Krümmungsverhalten der Funktion gilt nun:
Wendepunkte – grafische Bedeutung
Das folgende Beispiel soll diesen Zusammenhang grafisch erläutern. Es sei die Funktion
gegeben. Daraus ergeben sich folgende Ableitungen:
Es wird deutlich: Die Nullstellen der ersten Ableitung sind die Stellen, an denen die Funktion ihre Extrema hat. Die Nullstelle der zweiten Ableitung ist die Stelle, an dem die erste Ableitung ein Extremum und die ursprüngliche Funktion einen Wendepunkt hat.
Der Wendepunkt, an dem ist, markiert den Übergang zwischen Links- und Rechtskrümmung.
Als Eselsbrücke kann man sich überlegen, in welche Richtung man mit einem Fahrrad lenken müsste, wenn man den Graphen von nach abfahren würde. Die Lenkrichtung ist dabei das Gleiche wie das Verhalten der Krümmung.
Ein Beispiel aus der Praxis – was bedeutet die zweite Ableitung im Sachzusammenhang?
Eine Anwendung der zweiten Ableitung lässt sich in der Physik bzw. im Alltag einer jeden Person finden. Hierbei ist die Rede von der Darstellung des Wegs in Abhängigkeit von der Zeit oder als Frage formuliert:
Welchen Weg haben ein Auto/eine Person/ein Flugzeug zu einem bestimmten Zeitpunkt zurückgelegt?
Dabei bezeichnet die vergangene Zeit und den zurückgelegten Weg.
Daraus lassen sich die Bedeutungen der Ableitung schlussfolgern:
Die erste Ableitung stellt also die Änderung des Wegs dar, was im Sachzusammenhang die Geschwindigkeit beschreibt. Die Geschwindigkeitsänderung wiederum (also die zweite Ableitung) bezeichnet man als Beschleunigung.
Folgende Zusammenhänge kann man nun außerdem feststellen:
- Wenn gilt, herrscht eine „negative Beschleunigung“ vor – es wird also gebremst und die Geschwindigkeit nimmt ab: fällt.
- Wenn gilt, herrscht eine „positive Beschleunigung“ vor – es wird also beschleunigt und die Geschwindigkeit nimmt zu: steigt.
- Wenn gilt, findet keine Beschleunigung statt und die Geschwindigkeit bleibt konstant: hat ein Maximum, Minimum oder einen Sattelpunkt, denn, wenn anschließend wieder beschleunigt wird, steigt die Geschwindigkeit über diesen Punkt hinaus. Wird anschließend wieder gebremst, fällt die Geschwindigkeit unter diesen Punkt ab.
Wie werden Wendepunkte konkret bestimmt?
Nachfolgend soll anhand von zwei Beispielen die konkrete Berechnung von Wendepunkten einer Funktion erläutert werden.
Berechnung von Wendepunkten
- Zweite und dritte Ableitung bilden
- Nullstellen der zweiten Ableitung bestimmen
- Nullstellen der zweiten Ableitung in die dritte Ableitung einsetzen
- -Koordinate von Wendepunkten bestimmen
Berechnung von Wendepunkten – Beispiel 1
Beginnend soll das Beispiel von weiter oben aufgeführt werden. Zunächst bestimmt man die Ableitungen der Funktion – hier wird allerdings zusätzlich die dritte Ableitung benötigt:
Nun geht man ähnlich wie bei der Berechnung der Extremstellen von vor. Dazu wird die zweite Ableitung mit null gleichgesetzt (). Außerdem muss gelten: Die dritte Ableitung darf nicht gleich null sein ().
Überprüfung mit der dritten Ableitung:
Zu Bestimmung der -Koordinate des Wendepunkts wird der berechnete -Wert in die Funktion eingesetzt:
Somit ergibt sich der Wendepunkt der Funktion: bzw.
Berechnung von Wendepunkten – Beispiel 2
Gegeben sei die Funktion: .
Bestimmung der Ableitungen:
Nullsetzen der zweiten Ableitung zur Berechnung der Wendestellen:
Überprüfen der Stellen mit der dritten Ableitung:
Bestimmung der y-Koordinaten durch Einsetzen in :
Die Funktion hat also zwei Wendepunkte.
Zweite Ableitung und Wendepunkte – Zusammenfassung
- An der zweiten Ableitung einer Funktion lässt sich das Krümmungsverhalten des Funktionsgraphen ablesen.
- Für das Krümmungsverhalten von Funktionsgraphen gilt:
- Wendepunkte sind die Punkte einer Funktion, an denen die Steigung maximal bzw. minimal ist.
- Potenzielle Wendestellen können berechnet werden, indem die zweite Ableitung gleich null gesetzt wird (notwendige Bedingung für einen Wendepunkt: ). Außerdem muss die dritte Ableitung ungleich null sein (hinreichende Bedingung für einen Wendepunkt: und ).
Zweite Ableitung und Wendepunkte Übung
9'243
sofaheld-Level
6'600
vorgefertigte
Vokabeln
7'679
Lernvideos
37'145
Übungen
32'390
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen