Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Schnittpunkte linearer Funktionen

Erfahre, wie du die Schnittpunkte von linearen Funktionen sowohl grafisch als auch rechnerisch ermittelst. Lerne mehr über parallele Geraden und die Eigenschaften von Funktionen, die keinen Schnittpunkt haben. Wir erklären wichtige Begriffe wie Steigung und lineare Funktion. Interessiert? All das und noch mehr findest du im folgenden Video!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Schnittpunkte linearer Funktionen

Welche Bedeutung haben Schnittpunkte linearer Funktionen?

1/5
Bereit für eine echte Prüfung?

Das Lineare Funktionen Schnittpunkt Berechnen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.9 / 160 Bewertungen
Die Autor*innen
Avatar
Team Digital
Schnittpunkte linearer Funktionen
lernst du in der Sekundarstufe 1. Klasse - 2. Klasse

Grundlagen zum Thema Schnittpunkte linearer Funktionen

Schnittpunkte linearer Funktionen – Erklärung und Beispiele

Der Funktionsgraph einer linearen Funktion ist eine Gerade. Wenn wir die Graphen von zwei linearen Funktionen betrachten, können diese sich als Geraden in einem Schnittpunkt schneiden oder parallel zueinander verlaufen. Wenn die Funktionsgraphen von zwei linearen Funktionen parallel verlaufen, haben sie normalerweise keinen Schnittpunkt. In dem Spezialfall, dass die Funktionsgleichungen der betrachteten Funktionen identisch sind, haben die zugehörigen Geraden allerdings unendlich viele Schnittpunkte. In anderen Worten: Sie liegen in diesem Fall genau aufeinander.

Es gibt also insgesamt drei verschiedene Fälle, die du bei der Bestimmung von Schnittpunkten beachten solltest. Wie die drei unterschiedlichen Fälle aussehen, wie du bestimmen kannst, um welchen der Fälle es sich handelt und wie du einen Schnittpunkt von zwei linearen Funktionen konkret berechnen kannst, erfährst du in diesem Lerntext.

Kurz zur Wiederholung: Allgemein können lineare Funktionen in dieser Form dargestellt werden:

f(x)=mx+bf(x) = m \cdot x + b

Dabei ist

  • f(x)f(x) der Funktionswert,
  • mm die Steigung des Graphen,
  • bb der yy-Achsenabschnitt und
  • xx die unabhängige Variable.

Wie viele Schnittpunkte die Geraden zweier linearer Funktionen haben, hängt in erster Linie von ihrer Steigung und außerdem von ihrem yy-Achsenabschnitt ab.

Wenn zwei Geraden sich sowohl in der Steigung als auch im yy-Achsenabschnitt unterscheiden, haben sie einen Schnittpunkt.

Du kannst den Schnittpunkt berechnen oder grafisch bestimmen.

Schnittpunkt grafisch bestimmen

Du kannst überprüfen, ob sich die Funktionsgraphen von zwei linearen Funktionen schneiden, indem du sie jeweils in ein Koordinatensystem einzeichnest. Um lineare Funktionen zu zeichnen, kannst du zwei Punkte, die auf dem entsprechenden Funktionsgraphen liegen, in das Koordinatensystem einzeichnen und diese verbinden.

Grafische Bestimmung des Schnittpunkts zweier linearer Funktionen – Beispiel

Johann bezahlt den Kinderpreis von 88\,€ und probiert die Sushiteller für 0,300,30\,€ aus, während Michael den Erwachsenenpreis von 1010\,€ zahlt, aber nur die günstigeren Sushiteller für 0,200,20\,€ wählt.

Gibt es eine Anzahl an Sushitellern, für die beide genau gleich viel zahlen müssen?

Zunächst müssen wir die beiden Funktionsgleichungen aufstellen. Sie lauten:

Michael: f(x)=0,2x+10f(x) = 0,2 \cdot x + 10

Johann: g(x)=0,3x+8g(x) = 0,3 \cdot x + 8

Wenn du beide Geraden in ein Koordinatensystem einzeichnest, schneidet Johanns Gerade die yy-Achse bei 88 und hat eine etwas steilere Steigung. Michaels Gerade schneidet die yy-Achse bei 1010, hat jedoch eine etwas flachere Steigung.

Schnittpunkt von 2 Geraden

Du siehst, dass die beiden Geraden sich an dem Punkt (2014)(20|14) schneiden. Das bedeutet, dass Johann und Michael genau gleich viel bezahlen, wenn sie jeweils 2020 Sushiteller bestellen.

Die beiden Geraden haben einen Schnittpunkt.

Schnittpunkt rechnerisch bestimmen

Du kannst den Schnittpunkt der beiden Geraden auch rechnerisch bestimmen, indem du die beiden linearen Funktionen gleichsetzt und anschließend nach xx auflöst.

Michael: f(x)=0,2x+10f(x) = 0,2 \cdot x + 10

Johann: g(x)=0,3x+8g(x) = 0,3 \cdot x + 8

0,2x+10=0,3x+80,3x0,1x+10=8100,1x=2(10)x=20\begin{array}{cccl} 0,2 \cdot x + 10 & = & 0,3 \cdot x + 8 & \vert -0,3 \cdot x \\ -0,1 \cdot x + 10 & = & 8 & \vert - 10 \\ - 0,1 \cdot x & = & -2 & \vert \cdot (-10) \\ x & = & 20 & \end{array}

So hast du mit x=20x=20 die Stelle des Schnittpunkts berechnet. Um die yy-Koordinate des Schnittpunkts zu bestimmen, setzen wir den Wert in eine der beiden Funktionsgleichungen ein. Wir wählen an dieser Stelle f(x)f(x): f(20)=0,220+10=4+10=14f(20)=0,2 \cdot 20 + 10=4+10=14. Die yy-Koordinate ist 1414. Der berechnete Schnittpunkt hat die Koordinaten (2014)(20|14).

Lineare Funktionen ohne Schnittpunkt

Die Geraden zweier linearer Funktionen haben nicht immer einen Schnittpunkt. Wenn beide Funktionen die gleiche Steigung haben und sich der yy-Achsenabschnitt unterscheidet, treffen sich die zugehörigen Geraden nie und haben daher keinen Schnittpunkt.

Lineare Funktionen ohne Schnittpunkt

Das wäre zum Beispiel der Fall, wenn Michael auch die teureren Sushiteller für 0,300,30\,€ statt der günstigeren ausprobieren würde.

Die beiden Funktionsgleichungen sähen dann so aus:

Micheal: f(x)=0,3x+10f(x) = 0,3 \cdot x + 10

Johann: f(x)=0,3x+8f(x) = 0,3 \cdot x + 8

Wenn du sie gleichsetzt, kommst du auf

10810 \neq 8

Die beiden Funktionen verlaufen parallel zueinander und schneiden sich daher nicht.

Teste dein Wissen zum Thema Lineare Funktionen Schnittpunkt Berechnen!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Lineare Funktionen mit unendlich vielen Schnittpunkten

Neben keinem und einem Schnittpunkt können zwei lineare Funktionen auch unendlich viele Schnittpunkte haben. Das ist der Fall, wenn beide Funktionen die gleiche Steigung und den gleichen yy-Achsenabschnitt haben, wie z. B. die Funktionen von Michael und Johann am Weltsushitag, an dem das Restaurant seine Preise geändert hat.

Micheal: f(x)=0,25x+9f(x) = 0,25 \cdot x + 9

Johann: f(x)=0,25x+9f(x) = 0,25 \cdot x + 9

Lineare Funktionen mit unendlich vielen Schnittpunkten

Die Funktionsgleichungen sind identisch. Beide Geraden liegen übereinander und schneiden sich daher an unendlich vielen Punkten.

Schnittpunkte linearer Funktionen – Zusammenfassung

Die Geraden zweier linearer Funktionen haben

  • keinen Schnittpunkt, wenn die beiden Funktionen die gleiche Steigung, aber einen unterschiedlichen yy-Achsenabschnitt haben,
  • einen Schnittpunkt, wenn sich die Steigung und der yy-Achsenabschnitt unterscheiden, und
  • unendlich viele Schnittpunkte, wenn sowohl die Steigung als auch der yy-Achsenabschnitt identisch sind.

Wenn du an den Funktionsgleichungen von zwei Funktionen bereits ablesen kannst, dass sie einen Schnittpunkt besitzen,

  • kannst du diesen rechnerisch bestimmen, indem du die Funktionsgleichungen gleichsetzt und nach xx auflöst, oder
  • den Schnittpunkt zeichnerisch ermitteln, indem du die beiden Funktionsgraphen in ein Koordinatensystem einzeichnest und den Schnittpunkt anschließend abliest.

Häufig gestellte Fragen zum Thema Schnittpunkte linearer Funktionen

Transkript Schnittpunkte linearer Funktionen

Johann wagt gerne kulinarische Experimente. Schon lange will er Sushi ausprobieren. Darum lädt ihn sein Onkel Michael an seinem Geburtstag in das älteste japanische Restaurant der Stadt ein. Michael ist ziemlich erleichtert, als er sieht, dass das Sushi nicht allzu teuer ist. Wessen Rechnung wird höher ausfallen, die von Johann oder die von Michael? Helfen wir unseren beiden Schleckermäulern das herauszufinden, indem wir Schnittpunkte linearer Funktionen bestimmen. Die Speisekarte verrät uns, dass Erwachsene 10 Euro für das Buffet zahlen und Kinder 8 Euro plus entweder 20 oder 30 Cent je Teller mit Sushi. Onkel Michael mag keine kulinarischen Experimente, also entscheidet er sich für das am gewöhnlichsten aussehende Sushi für 20 Cent je Teller. Johann hingegen sucht etwas Ausgefalleneres und entscheidet sich für die Teller für 30 Cent. Wie viele Teller können die beiden leeren, bevor ihre Rechnung genau gleich hoch ist? Um das zu bestimmen, schauen wir uns einen Graphen an. Wir schreiben die geleerten Teller an die x-Achse und den Preis an die y-Achse. Weißt du, warum wir für die Teller die x-Achse wählen? Da man frei entscheiden kann, wie viele Teller man essen will, ist das die unabhängige Variable. Und die unabhängige Variable wird üblicherweise auf der x-Achse aufgetragen. Stellen wir einen Ausdruck für Michaels Gesamtpreis auf. Er hatte den Erwachsenenpreis mit den günstigeren Tellern. Der feststehende Preis für das Buffet beträgt für Michael 10 Euro und x ist die Anzahl der Teller, die wir mit dem Preis für jeden Teller multiplizieren müssen, also mit 20 Cent. Wenn Michael nach einem Teller schon genug vom Sushi hätte, würde der Gesamtpreis 10,20 Euro betragen. Nach zwei Tellern wäre Michael bei 10,40 Euro. Und so weiter. Wir können einen ähnlichen Ausdruck für Johann aufstellen. Der feststehende Preis für das Buffet beträgt bei ihm 8 Euro. Und jeder Teller kostet 30 Cent. Wenn Johann 5 Teller isst, beträgt der Gesamtpreis 9,50 Euro. Bei zehn Tellern käme er auf 11 Euro und so weiter und so fort. Graphisch können wir erkennen, dass sich die beiden Geraden bei x = 20 schneiden. Das bedeutet also, dass Johanns und Michaels Gesamtpreis identisch ist, wenn jeder von ihnen 20 Teller geleert hat. Aber wir können wir das rechnerisch bestimmen? Wir wollen ja herausfinden, wann Johanns und Michaels Gesamtpreise gleich sind, also setzen wir Michaels Funktion 10 + 0,2x gleich Johanns Funktion 8 + 0,3x. Die Variable x soll nur auf einer Seite erscheinen. Mit Äquivalenzumformungen bringen wir die 10 auf die andere Seite und teilen beide Seiten durch minus 0,10. So erhalten wir x = 20. Was aber, wenn Michael doch etwas wagt und das teurere Sushi probiert? Die Funktionsgleichung für Johann bleibt gleich: y = 8 + 0,3x. Aber die für den abenteuerlustigen Onkel Michael wird zu y = 10 + 0,3x. Nach wie vielen Tellern ist der Gesamtpreis für Johann und Michael gleich? Passen wir Michaels Graphen an. Wir beginnen bei 10 und addieren 0,3 für den ersten Teller und für den zweiten und so weiter. Hm sieht nicht so aus, ab ob sich die Geraden je schneiden würden. Setzen wir die beiden Funktionen gleich, um das rechnerisch zu überprüfen. Was passiert denn da, wenn wir versuchen, nach x aufzulösen? Wir erhalten 10 = 8. Aber 10 ist natürlich nicht 8. Wann immer die Koeffizienten vor den Variablen zweier linearen Funktionen in Vorzeichen und Betrag übereinstimmen, bedeutet das, dass die Geraden parallel liegen. Wenn das absolute Glied der Funktionen dann unterschiedlich ist, berühren sich die Geraden niemals! Onkel Michael und Johann gefällt das Restaurant so gut, dass sie zum Aktionstag am Internationalen Tag des Sushis zurückkommen wollen. Alle Kunden zahlen 9 Euro Eintritt und alle Sushiteller kosten 25 Cent. Die Gleichung für Michael lautet also y = 9 + 0,25x. Und die für Johann lautet ebenfalls y = 9 + 0,25x. Wenn wir für x einige Werte einsetzen und den Graphen zeichnen, erkennen wir, dass Kinder und Erwachsene immer den gleichen Gesamtpreis zahlen, wenn sie gleich viele Teller leeren. Nicht vergessen: Wenn die Steigung und der y-Achsenabschnitt identisch sind, sind auch die Geraden identisch, was bedeutet, dass diese beiden Funktionsgraphen unendlich viele Schnittpunkte besitzen. Fassen wir zusammen. Wir beginnen mit zwei Geraden, beide mit den Funktionsgleichungen y = mx + n. Einige Funktionsgraphen sind Geraden mit unterschiedlicher Steigung, die sich in genau einem Punkt schneiden. Das bedeutet, das Gleichungssystem besitzt eine Lösung. Manche Funktionen ergeben Geraden mit der gleichen Steigung, aber verschiedenen y-Achsenabschnitten. Diese Geraden liegen parallel zueinander und schneiden sich niemals. Und einige Funktionen ergeben Geraden mit der gleichen Steigung und dem gleichen y-Achsenabschnitt. Das bedeutet, es gibt unendlich viele Schnittpunkte. Zurück zu unserem Geburtstagskind Johann und Onkel Michael. Was für ein gewaltiger Stapel Teller. Die Kellnerin will die Rechnung ausdrucken, aber wie viel Sushi haben die denn gegessen?

16 Kommentare
  1. war gut

    Von Thilo Koepke, vor 14 Tagen
  2. Und wie berechnet man den Schnittpunkt wenn zwei Funktionen gegeben sind?

    Von Clara-Maria, vor 9 Monaten
  3. Hat total geholfen! Danke!

    Von Lara und Max, vor etwa einem Jahr
  4. super

    Von Kubi, vor etwa einem Jahr
  5. Mega! Da steht einfach wircklich Sushi auf japanisch!

    Von Anabled️‍‍☀️, vor etwa einem Jahr
Mehr Kommentare

Schnittpunkte linearer Funktionen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Schnittpunkte linearer Funktionen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'226

sofaheld-Level

6'600

vorgefertigte
Vokabeln

7'667

Lernvideos

37'111

Übungen

32'360

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden