Oberflächen von Körpern mit Körpernetzen bestimmen
Erfahre, wie man die Oberfläche eines Körpers mit Körpernetzen bestimmt. Wir erklären die Definitionen von Körpernetzen und Oberflächeninhalt am Beispiel eines Quaders und einer Pyramide. Interessiert? Tauche ein und entdecke mehr!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Oberflächen von Körpern mit Körpernetzen bestimmen
Oberflächen von Körpern mit Körpernetzen bestimmen
Stell dir vor, du willst dein gesamtes Zimmer mit Haftnotizzetteln vollkleben. Wie viele Zettel brauchst du dafür? Um das herauszufinden, müssen wir die Oberfläche deines Zimmers bestimmen. Dazu verwenden wir ein Körpernetz. In diesem Text und Video wird die Berechnung von Oberflächen von Körpern mithilfe ihrer Körpernetze einfach erklärt.
Körpernetz – Definition
Ein Zimmer hat meistens die Form eines Quaders. Nehmen wir an, das Zimmer ist $4~\pu{m}$ breit, $3~\pu{m}$ hoch und $9~\pu{m}$ lang. Du kannst den Quader zu einem ebenen Diagramm auseinanderfalten. Dieses Diagramm nennt man das Körpernetz des Quaders oder kurz Quadernetz. In dem Quadernetz kannst du alle Seitenflächen des Quaders gut erkennen. Das Quadernetz besteht aus $6$ Rechtecken.
Bei einem Quader sind die einander gegenüberliegenden Flächen kongruent zueinander, also deckungsgleich. Daher besteht das Quadernetz aus drei Paaren deckungsgleicher Flächen.
Oberflächeninhalt – Definition
Die Oberfläche eines Körpers besteht aus allen Seitenflächen, die den Körper begrenzen. Der Oberflächeninhalt $O$ des Körpers ist die Summe der Flächeninhalte dieser Seitenflächen. Um die Flächeninhalte zu berechnen, ist das Körpernetz nützlich.
Oberflächeninhalt – Quader
Beim Quader besteht das Körpernetz aus $6$ Rechtecken. Der Oberflächeninhalt ist daher die Summe der Flächeninhalte dieser $6$ Rechtecke:
$O = A_1+A_2+A_3+A_4+A_5+A_6$
Der Flächeninhalt jedes dieser Rechtecke ist das Produkt aus der Länge und der Breite des Rechtecks. Wir müssen für jedes der $6$ Rechtecke den Flächeninhalt berechnen und diese Werte addieren.
Wir beginnen mit den beiden kleinsten Flächen des Körpernetzes. Ihr Flächeninhalt beträgt jeweils:
$A_1 = A_2 = 3~\pu{m} \cdot 4~\pu{m} = 12~\pu{m}^2$
Für die beiden mittelgroßen Flächen berechnen wir:
$A_3 = A_4 = 3~\pu{m} \cdot 9~\pu{m} = 27~\pu{m}^2$
Schließlich haben wir noch die beiden größten Flächen mit dem Flächeninhalt:
$A_5 = A_6 = 4~\pu{m} \cdot 9~\pu{m} = 36~\pu{m}^2$
Der Oberflächeninhalt des Zimmers, also des Quaders mit den Kantenlängen $3~\pu{m}$, $4~\pu{m}$ und $9~\pu{m}$, ist die Summe dieser einzelnen Flächeninhalte:
$O = 12~\pu{m}^2+12~\pu{m}^2+27~\pu{m}^2+27~\pu{m}^2+36~\pu{m}^2+36~\pu{m}^2 = 150~\pu{m}^2$
Oberflächeninhalt – Pyramide
Wir betrachten als Nächstes das Körpernetz eines anderen Körpers. Kannst du erkennen, zu welchem Körper es zusammengefaltet werden kann?
Die Grundfläche ist quadratisch, alle Seitenflächen sind Dreiecke – es handelt sich um das Körpernetz einer quadratischen Pyramide. Wir berechnen den Oberflächeninhalt dieser Pyramide mithilfe ihres Körpernetzes. Der Flächeninhalt der quadratischen Basis beträgt:
$A_{\Box} = 3~\pu{m} \cdot 3~\pu{m} = 9~\pu{m}^2$
Den Flächeninhalt jeder der dreieckigen Seitenflächen berechnet man mit der Formel $A_{\Delta} = \frac{1}{2}gh$. Hierbei ist $g$ die Grundseite des Dreiecks und $h$ die zugehörige Höhe. Für die Dreiecke des Pyramidennetzes verwenden wir die Grundseite $g=3~\pu{m}$ und die Höhe $h=4,5~\pu{m}$. Der Flächeninhalt jedes der Dreieck beträgt also:
$A_{\Delta} = \frac{1}{2} \cdot 3~\pu{m} \cdot 4,5~\pu{m} = 6,75~\pu{m}^2$
Der Oberflächeninhalt $O$ dieser quadratischen Pyramide ist die Summe der Flächeninhalte der quadratischen Basis und der vier dreieckigen Seitenflächen:
$O = A_{\Box} + 4 \cdot A_{\Delta} = 9~\pu{m}^2 + 27~\pu{m}^2 = 36~\pu{m}^2$
Oberflächeninhalte von Körpern – Übungen
Jetzt weiß du, wie du Oberflächen von Körpern mit Körpernetzen bestimmen kannst. Um dein neues Wissen gleich auszuprobieren, findest du hier interaktive Übungen zu Körpernetzen.
Transkript Oberflächen von Körpern mit Körpernetzen bestimmen
Nach Monaten der Beharrlichkeit hat Dieter den renommierten Posten als stellvertretender Studentenwohnheimsprecher bekommen. Er ist ziemlich stolz auf diesen Titel. Klar, dass ihm sein Erzfeind Steffen da unbedingt einen Streich spielen MUSS. Mal schauen, welchen teuflischen Plan Steffen ausgeheckt hat. Er will Dieters gesamtes Zimmer mit Haftnotizzetteln vollkleben. Wie viele Notizzettel er dafür wohl benötigen wird? Wir können Körpernetze benutzen, um die Größe der Oberfläche des Zimmers herauszufinden. Das Zimmer ist ein Quader mit einer Breite von 4 Metern, einer Höhe von 3 Metern und einer Länge von 9 Metern. Wir können diesen Quader zu einem Netz ausfalten, also zu einem zweidimensional ausgebreiteten Diagramm eines Körpers. Ein Netz ist hilfreich, weil wir so problemlos jede Seitenfläche unseres Körpers betrachten können. Dieser hier hat 6 Flächen. Weil gegenüberliegende Seiten des Quaders identisch sind, haben wir 3 Paare identischer Fläche HIER, HIER und HIER. Der OBERFLÄCHENINHALT eines Körpers ist die SUMME der Inhalte seiner Flächen. Jede Fläche ist ein Rechteck. Und wir wissen, dass wir die Fläche eines Rechtecks als Länge mal Breite berechnen. Wenn wir die Größe der Oberfläche des Quaders berechnen möchten, müssen wir also die Flächeninhalte der Rechtecke herausfinden, aus denen der Quader besteht, und sie dann addieren. Dann kennen wir die Größe der Oberfläche von Dieters Zimmer. Fangen wir mit DIESEN beiden Flächen an. Ihr Inhalt beträgt 3 Meter mal 4 Meter, also insgesamt 12 Quadratmeter. Nun nehmen wir uns DIESE BEIDEN vor. Ihr Inhalt beträgt 3 Meter mal 9 Meter, also insgesamt 27 Quadratmeter. Und zuletzt DIESE beiden. 4 Meter mal 9 Meter gleich 36 Quadratmeter. Um den Oberflächeninhalt zu berechnen, setzten wir nun 12 Quadratmeter für die Flächen 1 und 2 ein, 27 Quadratmeter für die Flächen 3 und 4 und 36 Quadratmeter für die Flächen 5 und 6. Zusammengefasst ergibt das 2 mal 12 Quadratmeter plus 2 mal 27 Quadratmeter plus 2 mal 36 Quadratmeter. Wir vereinfachen weiter zu 24 Quadratmeter plus 54 Quadratmeter plus 72 Quadratmeter, was eine Gesamtfläche von 150 Quadratmetern ergibt. Jetzt kennt Steffen den Oberflächeninhalt von Dieters Zimmer und kann ihm einen Denkzettel verpassen oder auch ein paar mehr. Er muss sich ranhalten, bevor Dieter zurückkommt. Aber wo STECKT Dieter eigentlich? Oh Mann, er ist dabei, in Steffens Zimmer ebenfalls Schabernack zu treiben. Was ist das? Offenbar der Bauplan für irgendeine fiese Machenschaft. Wir haben eine quadratische BASIS mit den Maßen 3 mal 3 Metern und vier dreieckige SEITENFLÄCHEN mit einer Höhe von 4,5 Metern. Sieht aus, wie das Netz eines dreidimensionalen Körpers aber was für ein Körper ist das bloß? Genau, es ist eine QUADRATISCHE PYRAMIDE. Lass und den Oberflächeninhalt dieser quadratischen Pyramide wieder mit Hilfe eines Körpernetzes ermitteln. Der Flächeninhalt der Basis beträgt 3 Meter mal 3 Meter, also 9 Quadratmeter. Den Flächeninhalt jedes Dreiecks berechnet man mit der Hälfte der Grundseite mal die Höhe. Also einhalb mal 3 Meter mal 4,5 Meter. Das ergibt einhalb mal 13,5 Quadratmeter, also 6,75 Quadratmeter. Der Oberflächeninhalt dieser quadratischen Pyramide ist die Summe dieser Flächeninhalte. Es gibt VIER Dreiecke die Gesamtfläche ist also 9 Quadratmeter plus VIERMAL 6,75 Quadratmeter. Das sind 9 Quadratmeter plus 27 Quadratmeter, also 36 Quadratmeter. Nun ist Dieter bereit, seinen Plan in die Tat umzusetzen. Lass uns an dieser Stelle noch einmal wiederholen, wie man die Größe von Oberflächen mithilfe von Netzen berechnen kann. Wir können Körper, wie zum Beispiel Quader und Pyramiden auffalten und erhalten so ein zweidimensionales Diagramm, das wir NETZ nennen. Den Oberflächeninhalt finden wir dann, indem wir die Inhalte aller Flächen berechnen und sie addieren. Oh je, sie sind gleichzeitig fertig geworden.
Oberflächen von Körpern mit Körpernetzen bestimmen Übung
-
Beschreibe, wie man die Oberfläche eines Quaders bestimmt.
TippsDas Körpernetz erhältst du, wenn du dir einen Körper aus Papier gebaut vorstellst und ihn auseinanderfaltest.
Die Anzahl der Flächen des Körpernetzes entspricht der Anzahl der Seitenflächen des Körpers.
Das Körpernetz des Tetraeders besteht aus $4$ gleichseitigen Dreiecken.
LösungUm die Oberfläche eines Körpers zu berechnen, musst du die Flächeninhalte aller seiner Seitenflächen addieren. Dazu kannst du ein Körpernetz des Körpers verwenden. Ein Quader z. B. hat $6$ Seitenflächen. Jede Seitenfläche des Quaders ist ein Rechteck. Jedes Körpernetz eines Quaders besteht daher aus $6$ Rechtecken. Du erhältst ein solches Körpernetz, indem du dir den Körper längs einer oder mehrerer Kanten aufgeschnitten und auseinandergefaltet denkst. Auf dem Bild siehst du ein Beispiel eines Körpernetzes.
Ein Körpernetz besteht aus allen Seitenflächen des Körpers. Diese Seitenflächen sind längs der Kanten miteinander verbunden. Verschiedene Körpernetze zu demselben Körper erhältst du, wenn du sie an verschiedenen Kanten aufschneidest.
Die Oberfläche des Quaders ist die Summe der Flächeninhalte seiner Seitenflächen, also die Summe der Seitenflächen der $6$ Rechtecke seines Körpernetzes. Bei einem Quader mit der Länge $4~\text m$, der Breite $9~\text m$ und der Höhe $3~\text m$ haben je zwei Seitenflächen die Flächeninhalte:
- $4~\text m \cdot 9~\text m = 36~\text m^2$
- $9~\text m \cdot 3~\text m = 27~\text m^2$
- $4~\text m \cdot 3~\text m = 12~\text m^2$
$O = 2 \cdot (4~\text m \cdot 9~\text m + 9~\text m \cdot 3~\text m + 4~\text m \cdot 3~\text m) = 2 \cdot (36~\text m^2+ 27~\text m^2 + 12~\text m^2) = 150~\text m^2$
-
Bestimme den Oberflächeninhalt der Pyramide.
TippsDen Flächeninhalt eines Dreiecks kannst du mit der Formel
$A_\Delta = \frac{\text{Grundseite} \cdot \text{Höhe}}{2}$
berechnen.
Die Oberfläche eines Körpers ist die Summe der Flächeninhalte seiner Seitenflächen.
Bei dem Körpernetz im Bild sind die vier Dreiecke kongruent.
LösungDie Oberfläche eines Körpers ist die Summe der Flächeninhalte eines Körpernetzes. Du erhältst ein Körpernetz, indem du den Körper auseinanderfaltest. An dem Körpernetz kannst du dann direkt ablesen, welche Flächeninhalte du berechnen musst.
Das Körpernetz im Bild besteht aus einem Quadrat und vier kongruenten Dreiecken. Der Flächeninhalt eines Dreiecks ist:
$A_\Delta = \frac{g \cdot h}{2}$
Hierbei ist $g$ eine Seite des Dreiecks und $h$ die zugehörige Höhe. Bei den Dreiecken im Bild ist $g= 3~\text m$ und $h=4,5~\text m$. Daher ist der Flächeninhalt jedes der Dreiecke:
$A_\Delta = \frac{3~\text m \cdot 4,5~\text m}{2} = \frac{13,5~\text m^2}{2} = 6,75~\text m^2$
Der Flächeninhalt eines Quadrats ist das Quadrat seiner Seitenlänge $a$:
$A_\Box = a^2$
Hier ist $a=3~\text m$, also:
$A_\Box = (3~\text m)^2 = 9~\text m^2$.
Die Oberfläche der quadratischen Pyramide, die du aus dem Körpernetz erhältst, ist demnach:
$O = A_\Box + 4 \cdot A_\Delta = 9~\text m^2 + 4 \cdot 6,75~\text m^2 = 9~\text m^2 + 27~\text m^2 = 36~\text m^2$
-
Bestimme die Oberfläche.
TippsDer Flächeninhalt eines rechtwinkligen Dreiecks ist die Hälfte des Flächeninhalts des zugehörigen Rechtecks.
Die Anzahl der Kanten des Körpernetzes ist die Anzahl der Kanten des Körpers + die Anzahl der Schnitte, die du setzen musst, um den Körper zu dem Körpernetz auseinanderfalten zu können.
Die Oberfläche des oben betrachteten Körpers ist die Summe aus den Flächeninhalten dreier Rechtecke und zweier kongruenter Dreiecke.
LösungDer Körper im Bild oben ist ein Prisma mit dreieckiger Grundfläche. Der Körper hat $9$ Kanten: je drei an der oberen und unteren horizontalen Fläche und drei vertikale Kanten. Die Oberfläche des Körpers besteht aus $5$ Teilflächen, nämlich den beiden horizontalen Dreiecken und drei vertikalen Rechtecken. Das abgebildete Körpernetz erhältst du, indem du den Körper längs jeweils zwei horizontaler Kanten oben und unten sowie einer vertikalen Kante aufschneidest. Dazu brauchst du also $5$ Schnitte. Durch jeden Schnitt werden aus einer Kante des Körpers zwei Kanten seines Körpernetzes. Das Körpernetz hat also $9+5=14$ Kanten.
Die Oberfläche des Prismas ist die Summe der Flächeninhalte der Teilflächen des Körpernetzes.
Die Flächeninhalte der Rechtecke betragen:
- $3 \cdot 7 = 21$
- $4 \cdot 7 = 28$
- $5 \cdot 7 = 35$
$(3+4+5) \cdot 7 = 84$
Zu der Oberfläche des Prismas fehlen nun noch Flächeninhalte der beiden Dreiecke. Die beiden Dreiecke haben dieselben Seitenlängen und sind daher kongruent, haben also insbesondere denselben Flächeninhalt. Nach dem Satz des Pythagoras sind die Dreiecke auch rechtwinklig, denn:
$3^2 + 4^2 = 9+16 = 25 = 5^2$
Weil die Dreiecke rechtwinklig sind, kannst du die beiden dem rechten Winkel anliegenden Seiten als Grundseite und Höhe verwenden. Der Flächeninhalt jedes der beiden Dreiecke ist also:
$A_\Delta = \frac{1}{2} \cdot (3 \cdot 4)=6$
Die Oberfläche des Prismas ist nun die Summe der Flächeninhalte des Körpernetzes:
$O = 84 + 2 \cdot 6= 96$
-
Erschließe die Körper und ihre Oberflächen.
TippsDie Höhe eines gleichseitigen Dreiecks ist das $\frac{\sqrt{3}}{2}$-fache der Seitenlänge.
Der Flächeninhalt eines rechtwinkligen Dreiecks ist die Hälfte des Produkts der beiden kürzeren Seitenlängen.
LösungDu kannst den Körpernetzen den jeweils passenden Körper zuordnen, indem du die Seitenflächen der Körper mit den Teilflächen der Körpernetze vergleichst. Die Anzahl der Teilflächen ist nicht bei allen Körpernetzen anders, daher ist die Zuordnung nicht allein aufgrund der Anzahlen möglich: Denn eines der Körpernetze besteht aus zwei Dreiecken und drei Rechtecken, ein anderes aus einem Quadrat und vier Dreiecken. Hier musst du also zusätzlich zu der Anzahl auch die Form der Teilflächen berücksichtigen.
Um die Oberflächen zu bestimmen, sind jeweils die Flächeninhalte von Dreiecken, Rechtecken und Quadraten zu berechnen. So erhältst du folgende Zuordnung:
Beispiel 1:
- Das Körpernetz besteht aus $4$ gleichseitigen Dreiecken der Seitenlänge $2$.
- Der zugehörige Körper ist ein Tetraeder.
- Die Höhe eines gleichseitigen Dreiecks mit der Seitenlänge $2$ ist nach dem Satz des Pythagoras: $\sqrt{2^2-1^2} = \sqrt{3}$.
- Der Flächeninhalt eines solchen Dreiecks beträgt also $\frac{\sqrt{3} \cdot 2}{2}$.
- Die Oberfläche ist demnach $O=4\sqrt{3}$.
Beispiel 2:
- Das Körpernetz besteht aus $2$ kongruenten, rechtwinkligen Dreiecken und drei Rechtecken.
- Der zugehörige Körper ist ein Prisma mit dreieckiger Grundfläche.
- Der Flächeninhalt eines der Dreiecke beträgt $\frac{3 \cdot 4}{2} = 6$.
- Die Summe der Flächeninhalte der Rechtecke beträgt: $(3+4+5) \cdot 2 = 24$.
- Die Oberfläche ist daher $O=24+2 \cdot 6 = 36$.
Beispiel 3:
- Das Körpernetz ist aus einem Quadrat und vier kongruenten, gleichschenkligen Dreiecken zusammengesetzt.
- Der zugehörige Körper ist eine Pyramide mit quadratischer Grundfläche.
- Nach dem Satz des Pythagoras ist die Höhe des gleichschenkligen Dreiecks mit Schenkeln der Länge $3$ und der Grundseite der Länge $2$ gegeben durch $\sqrt{3^2-1^2} = \sqrt{8} = 2\sqrt{2}$.
- Der Flächeninhalt eines gleichschenkligen Dreiecks beträgt demnach $\frac{2\sqrt{2} \cdot 2}{2} = 2\sqrt{2}$.
- Der Flächeninhalt des Quadrats mit Seitenlänge $2$ ist $2^2 = 4$.
- Die Oberfläche ist also $O=4+4 \cdot 2\sqrt{2} = 4 \cdot (1+2\sqrt{2})$.
Beispiel 4:
- Das Körpernetz besteht aus $8$ kongruenten, gleichseitigen Dreiecken.
- Der zugehörige Körper ist ein Oktaeder.
- Der Flächeninhalt jedes Dreiecks ist wie beim Tetraeder $\sqrt{3}$.
- Die Oberfläche ist also $O=8\sqrt{3}$.
-
Gib die Flächeninhalte an.
TippsBei einem rechtwinkligen Dreieck kannst du die zur gewählten Grundseite senkrechte Seite als Höhe verwenden.
Der Flächeninhalt eines rechtwinkligen Dreiecks ist die Hälfte des Flächeninhalts des zugehörigen Rechtecks.
In der Formel
$A_\Delta = \frac{g \cdot h}{2}$
steht die Höhe $h$ senkrecht auf der Seite $g$.
LösungDu kannst den Flächeninhalt fast jeder ebenen Figur berechnen, indem du sie in Dreiecke zerlegst. Die Formel für den Flächeninhalt eines Dreiecks ist:
$A_\Delta = \frac{g \cdot h}{2}$
Hierbei ist $g$ eine Seite des Dreiecks und $h$ die zu dieser Seite gehörige Höhe, d. h. eine Strecke, die senkrecht auf der Seite $g$ steht und von der Seite bis zum gegenüberliegenden Eckpunkt führt.
Bei einem rechtwinkligen Dreieck kannst du eine der beiden dem rechten Winkel anliegenden Seiten als Grundseite $g$ und die andere als Höhe $h$ verwenden. Bezeichnest du diese beiden Seiten mit $a$ und $b$, so ist der Flächeninhalt $A= \frac{a \cdot b}{2}$ genau die Hälfte des Flächeninhalts $a \cdot b$ desjenigen Rechtecks, das du aus den Seiten $a$ und $b$ erhältst. Denn das rechtwinklige Dreieck ist die Hälfte dieses Rechtecks.
Der Flächeninhalt eines Quadrats ist genau das Quadrat seiner Seitenlänge $a$, also $A_\Box = a^2$.
Im Bild siehst du einige der Flächen mit den passenden Formeln.
-
Erschließe die Aussagen.
TippsÜberlege, wie sich die Anzahl der Kanten ändert, wenn du einen Körper zu einem Körpernetz auseinanderfaltest.
LösungFolgende Sätze sind richtig:
- „Zu jedem Körper mit ebenen Begrenzungsflächen ... gibt es verschiedene Körpernetze.“ Diese verschiedenen Körpernetze ergeben sich durch die Wahlfreiheit der Kanten, längs derer du den Körper aufschneidest, um das Körpernetz zu erhalten.
- „Nicht zu jeder ebenen Figur aus Flächen ... gibt es einen passenden Körper, der diese Figur als Körpernetz hat.“ Dazu genügt es, sich drei Quadrate in einer Reihe vorzustellen. Faltet man diese zusammen, erhält man eine Art dreiseitiges Prisma, das aber weder über eine Grund- noch über eine Deckfläche verfügt.
- „Die Oberfläche eines Körpers ... ist die Summe der Flächeninhalte der Flächen seines Körpernetzes.“ Dies ist die Definition der Oberfläche.
- „Die Anzahl der Seitenflächen eines Körpers ... ist kleiner als die Anzahl der Kanten seines Körpernetzes.“ Denn jede Fläche des Körpernetzes ist durch mindestens drei Kanten begrenzt und jede Kante gehört zu höchstens zwei Flächen.
- „Die Anzahl der Kanten eines Körpernetzes ... ist größer als die Anzahl der Kanten des zugehörigen Körpers.“ Die Differenz der Anzahl der Kanten des Körpernetzes und der Anzahl der Kanten des Körpers ist die Anzahl der Schnitte, die du machen musst, um das Körpernetz zu erhalten. Schneidest du längs einer Kante auf, so werden aus einer Kante des Körpers zwei Kanten im Körpernetz.
8'905
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'232
Lernvideos
35'802
Übungen
32'564
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Bruchgleichungen lösen – Übungen
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
War ein bisschen swirieg😬😬😬😬😳
Nice erklärt, aber bei der letzten Übung vor der Bonusfrage hab ich nicht mal das Wurzel-Zeichen gecheckt.
Ich kapiere es einfach nicht das Video hat mir sehr geholfen für meine Arbeit und der Design ist auch gut sie könnten doch noch ein Video machen das gleiche erklären aber
Mit einem anderem Design das würde mich sehr freuen danke 🙏
Cooles viedeo, ist ein bisschen komplex aber ansonsten sehr gut!
Voll cool 😎