Kreisdiagramme
Entwirf das Rätsel der Kreisdiagramme: Verstehe, wie sie Gesamt- und Teilwerte darstellen. Lerne, wie du Daten aus ihnen herauslesen und selbst solche Diagramme erstellen kannst. Aber Achtung: Nicht alle Datensätze sind geeignet. Bereit, dich in das Diagramm-Abenteuer zu stürzen? Lies weiter im Text!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Kreisdiagramme
Was sind Kreisdiagramme?
Bei einem Kreisdiagramm repräsentiert der Kreis die Gesamtheit, zum Beispiel alle 40 Ferientage. Der Kreis ist in Sektoren aufgeteilt, die für Anteile des Ganzen stehen, zum Beispiel die Ferientage, an denen Otto etwas Bestimmtes gemacht hat. Die Größe der Sektoren gibt an, wie groß der jeweilige Anteil ist. Der gesamte Kreis ist dabei immer die Summe aller Anteile. Nach demselben Prinzip funktionieren auch Ringdiagramme und dreidimensionale Tortendiagramme.
Kreisdiagramme lesen
Um Daten aus einem Kreisdiagramm ablesen zu können, müssen wir die Größe der Sektoren und ihren Anteil am gesamten Kreis bestimmen. Dazu messen wir den Winkel eines Sektors und teilen ihn durch $360^\circ$, den Winkel des ganzen Kreises. Den so bestimmten Anteil multiplizieren wir dann mit der Gesamtzahl, die im Diagramm dargestellt ist.
Wir können also die folgende Formel verwenden, um die Anzahl der Tage zu berechnen, die den einzelnen Sektoren zugeordnet ist:
$\dfrac{\text{Winkel}}{360^\circ} \cdot \text{Gesamtzahl} = \text{Anzahl}$
Betrachten wir als Beispiel, welche Aktivitäten Otto an den 40 Ferientagen in den Sommerferien durchgeführt hat – und welchen Anteil sie an den gesamten Ferien haben:
Der Sektor für Fußball spielen hat einen Winkel von $180^\circ$. Wir teilen durch $360^\circ$ und multiplizieren mit der Gesamtzahl der Ferientage:
$\frac{180^\circ}{360^\circ}\cdot 40 = \frac{1}{2} \cdot 40 = 20$
Otto hat also an 20 Tagen der Ferien Fußball gespielt.
Betrachten wir die verbleibenden Kreissektoren:
Strand:
$\frac{90^\circ}{360^\circ}\cdot 40 = \frac{1}{4} \cdot 40 = 10$
Kino:
$\frac{36^\circ}{360^\circ}\cdot 40 = \frac{1}{10} \cdot 40 = 4$
Eis essen:
Der letzte Sektor ist nicht beschriftet. An diesen Tagen hat Otto Eis gegessen. Da wir alle anderen Sektoren bereits kennen, können wir auch ohne Winkelangabe berechnen, an wie vielen Tagen Otto Eis gegessen hat.
Da alle Sektoren zusammen die 40 Ferientage ergeben müssen, können wir die Tage auch berechnen, indem wir die bisherigen Ergebnisse von 40 subtrahieren.
$40 - 20 - 10 - 4 = 6$
Otto hat also an $6$ Tagen Eis gegessen.
Kreisdiagramme zeichnen
Um ein Kreisdiagramm zu einem Datensatz zu erstellen, müssen wir bestimmen, wie groß die einzelnen Sektoren zu zeichnen sind. Dazu bestimmen wir für jeden Sektor den Anteil am Gesamten, den der Sektor darstellt. Wir teilen dazu die Anzahl, die zu dem Sektor gehört, durch die Gesamtzahl und multiplizieren mit $360^\circ$, dem Winkel des Vollkreises. In unserem Beispiel teilen wir also die Anzahl der Tage durch die Gesamtzahl und multiplizieren das Ergebnis mit $360^\circ$. Die berechneten Winkel werden nacheinander im Kreis abgetragen und wir erhalten die Sektoren des Kreisdiagramms.
Betrachten wir erneut eine Aufgabe mit insgesamt 40 Ferientagen und den folgenden Aktivitäten:
Aktivität | Anzahl der Tage |
---|---|
Drachen reiten | 14 |
Feuerwerk | 5 |
tauchen | 6 |
Raumschiff fliegen | 3 |
bekocht werden | 12 |
Wir bestimmen die Winkel nach der folgenden Formel und zeichnen sie nacheinander in ein Kreisdiagramm ein:
$\dfrac{\text{Anzahl}}{\text{Gesamtzahl}} \cdot 360^\circ= \text{Winkel}$
Drachen reiten:
$\frac{14}{40}\cdot 360^\circ= 126^\circ$
Feuerwerk:
$\frac{5}{40}\cdot 360^\circ= 45^\circ$
tauchen:
$\frac{6}{40}\cdot 360^\circ= 54^\circ$
Raumschiff fliegen:
$\frac{3}{40}\cdot 360^\circ= 27^\circ$
bekocht werden:
Der Winkel des letzten Sektors muss nicht berechnet werden. Nach Einzeichnen aller anderen Sektoren verbleibt der passende Anteil, da sich alle Sektoren zusammen zum Kreis ergänzen müssen.
Eigenschaften von Kreisdiagrammen
Ein Kreisdiagramm stellt immer die Verteilung innerhalb einer Gesamtheit dar. Der ganze Kreis steht dabei für die Gesamtheit, die einzelnen Sektoren für Teile des Ganzen. Dabei muss jedes Element genau einem Sektor zugeordnet werden. Es wird zum Beispiel jeder Ferientag der Aktivität zugeordnet, mit der Otto an diesem Tag die meiste Zeit verbracht hat.
Das bedeutet, dass sich ein Kreisdiagramm nur eignet, wenn die Summe der Anteile das Ganze ergibt. Das wäre zum Beispiel bei einer Mehrfachnennung nicht der Fall. Nehmen wir an, Otto hat in den $10$ Tage langen Herbstferien an $8$ Tagen Fußball gespielt, war an $2$ Tagen im Kino und an $2$ Tagen im Hallenbad. Hier gilt $8 + 2 + 2 = 12 \neq 10$. Die Summe der Aktivitäten entspricht also nicht der Gesamtzahl der Ferientage, da Otto an den beiden Nachmittagen, die er im Kino verbracht hat, am Vormittag zusätzlich mit seinen Freunden beim Fußballspielen war. Diese Tage lassen sich somit beiden Aktivitäten zuordnen. Hier wäre also die Summe der Sektoren größer als der Kreis. Daten dieser Art sind daher für ein Kreisdiagramm nicht geeignet.
Dieses Video
In diesem Video erklären wir dir, wie Kreisdiagramme aufgebaut sind. Du lernst, wie du Daten aus einem Kreisdiagramm ablesen kannst und wie du selbst ein Kreisdiagramm zeichnest. Wir zeigen dir auch ein Beispiel für einen alternativen Rechenweg mit dem Dreisatz.
Transkript Kreisdiagramme
Jedes Jahr nach den Ferien erzählt Otto ganz stolz, was er in der freien Zeit alles gemacht hat. Um einen Überblick über seine Ferienabenteuer zu haben, helfen uns Kreisdiagramme. In diesem Video lernst du, wie ein Kreisdiagramm aufgebaut ist, wie du Daten aus ihm ablesen kannst und wie du es erstellen kannst. Ein Kreisdiagramm ist in verschiedene Sektoren eingeteilt, die einen Anteil des Gesamten darstellen und der Kreis gibt somit die Summe dieser Anteile an. Schauen wir uns doch zunächst einmal an diesem Kreisdiagramm an, was Otto letztes Jahr in seinen Ferien gemacht hat. Die Summe in diesem Kreisdiagramm entspricht den 40 Ferientagen. Der größte Sektor ist dieser hier, der den Tagen entspricht, an denen Otto Fußball gespielt hat. Er entspricht der Hälfte des Kreises. Da der Kreis insgesamt einen Winkel von 360 Grad hat, ist die Hälfte davon 180 Grad. Dieser Sektor entspricht also der Hälfte der Ferientage. Otto hat daher an 20 Tagen Fußball gespielt. Der nächste Sektor entspricht den Tagen, an denen Otto am Strand war. Dies ist ein 90 Grad Winkel, also haben wir hier 90 Grad von 360 Grad und das sind ein Viertel. Wollen wir die Ferientage berechnen, an denen Otto am Strand war, so rechnen wir ein Viertel von 40 und das sind 10. Der dritte Sektor gibt die Tage an, an denen Otto im Kino war. Aber woher wissen wir denn, wie viele Tage das sind? Dazu nehmen wir uns ein Geodreieck zur Hilfe. Dieser Winkel ist 36 Grad groß. Mithilfe des Dreisatzes können wir nun bestimmen, wie viele Tage das sind. 360 Grad, also der gesamte Kreis, steht für 40 Tage. Teilen wir diese beiden Werte nun durch 360 und multiplizieren dann mit 36 so sehen wir, dass dieser Anteil 4 Tagen entspricht. Ebenso kann man diesen Anteil durch das Verhältnis von 36 zu 360 berechnen. Dies ist gekürzt Ein Zehntel und Ein Zehntel von 40 Tagen sind ebenfalls 4 Tage. Nun haben wir schon gesehen, was Otto an 10 + 20 + 4, also 34 Tagen seiner Ferien gemacht hat. Da das Kreisdiagramm alle Ferientage angibt, wissen wir nun, dass der letzte Abschnitt 40 Tagen minus 34 Tagen entspricht. Otto hat also an 6 Tagen Eis gegessen. Schauen wir doch mal, was Otto dieses Jahr in seinen Ferien gemacht hat. Dann können wir dies ebenso in ein Kreisdiagramm eintragen. Insgesamt gab es wieder 40 Tage Ferien und er hat diese mit 5 verschiedenen Aktivitäten verbracht. 14 Tage davon ist er auf einem Drachen geritten. Um den zugehörigen Winkel zu berechnen multiplizieren wir Vierzehn Vierzigstel mit dem Wert des Winkels eines vollen Kreises, also 360 Grad. Dieser Anteil hat einen Winkel von 126 Grad. Zeichnen wir diesen Winkel doch schonmal in unser Kreisdiagramm ein. Wir orientieren uns dabei immer an dem Mittelpunkt des Kreises. Jetzt müssen wir diesen Vorgang nur noch für jede weitere Aktivität wiederholen. 5 Tage hintereinander hat er ein riesiges Feuerwerk gesehen. Wir rechnen also fünf vierzigstel mal 360 Grad und zeichnen den Winkel von 45 Grad so in das Kreisdiagramm ein. 6 Tage lang war er Tiefseetauchen und hat seltene Fische gesehen. Wir rechnen also sechs vierzigstel mal 360 Grad und erhalten einen Winkel von 54 Grad. Außerdem ist er 3 Tage lang in einem Raumschiff geflogen und wurde 12 Tage lang von einer Sterneköchin bekocht. Weil er insgesamt nur 5 Sachen gemacht hat, müssen wir hier nur eine der Winkelgrößen berechnen, da der letzte Abschnitt dem Rest der Ferien entspricht. Berechnen wir den Winkel für die 3 Tage und zeichnen ihn in das Kreisdiagramm ein, so erhalten wir am Ende dieses Kreisdiagramm. Dann können wir erkennen, was Otto in seinen Ferien am meisten gemacht hat. Fassen wir das doch noch einmal zusammen. Ein Kreisdiagramm ist in verschiedene Sektoren eingeteilt, die einen Anteil des Gesamten darstellen. Da die Summe der Anteile die Gesamtzahl ergibt, entspricht die Summe der Sektoren den ganzen Kreis. Man kann mithilfe der Winkelgrößen den Anteil des Ganzen berechnen. Außerdem kann man mithilfe des Anteils die entsprechende Winkelgröße des Kreisdiagramms berechnen und dann einzeichnen. Zum Beweis seiner Ferienabenteuer zeigt Otto allen seine Fotos. Da hat Otto wohl sehr viel Fantasie.
Kreisdiagramme Übung
-
Nenne die korrekten Aussagen.
TippsDer größte Sektor des Kreisdiagramms gibt die Aktivität an, die Otto am häufigsten ausgeführt hat.
Ist ein Sektor doppelt so groß wie ein anderer Sektor, bedeutet das, dass Otto mit dieser Aktivität doppelt so viel Zeit verbracht hat.
LösungFolgende Aussagen sind korrekt:
- „Otto hat die meiste Zeit seiner Ferien mit Fußballspielen verbracht.“ Dieser Sektor ist der größte in dem Kreisdiagramm.
- „Er hat genauso viel Zeit mit Fußballspielen verbracht, wie mit allen anderen Aktivitäten zusammen.“ Das Fußballspielen nahm genau die Hälfte der Zeit ein. Dies ist zu erkennen, da der Sektor „Fußballspielen“ genau die Hälfte des ganzen Kreisdiagramms einnimmt.
- „Insgesamt hat er in seinen Ferien $4$ verschiedene Aktivitäten unternommen.“ Das Kreisdiagramm ist in vier verschiedene Sektoren eingeteilt, die für die verschiedenen Aktivitäten stehen.
- „Entspricht der Kreissektor genau dem halben Kreis, ist der Winkel $180^\circ$ groß.“ Ein Kreis hat einen Innenwinkel von $360^\circ$. Die Hälfte davon sind $180^\circ$.
- „Die geringste Zeit seiner Ferien hat Otto am Strand verbracht.“ Der kleinste Sektor gibt an, mit welcher Aktivität er am wenigstens Zeit verbracht hat. Das ist in diesem Fall der Sektor „Kino“. Die geringste Zeit hat er also im Kino verbracht. Am Strand war er ein Viertel seiner Zeit. Dies erkennt man, da der Sektor „Strand“ einen Winkel von $90^\circ$ besitzt, was genau ein Viertel des gesamten Kreisinnenwinkels von $360^\circ$ ausmacht.
- „Er hat nur an halb so vielen Tagen Eis gegessen, wie er am Strand war.“ Der Sektor „Eis essen“ ist nicht halb so groß, wie der Sektor „Strand“. Dies ist erkennbar, da „Kino“ und „Eis essen“ zusammen genauso groß sind, wie der Sektor „Strand“. Jedoch ist der Sektor „Kino“ kleiner als „Eis essen“, weshalb das "Eis essen" mehr als die Hälfte der Strand-Zeit eingenommen hat. Somit ist diese Aussage falsch.
- „Je größer der Kreissektor ist, desto kleiner ist der Winkel des Sektors.“ Je größer der Kreissektor ist, desto größer wird auch der entsprechende Winkel des Kreissektors.
-
Ergänze die fehlenden Begriffe.
TippsEin Kreisdiagramm ist in verschiedene Sektoren eingeteilt, die einen Anteil des Gesamten darstellen.
Verbringt Otto die meiste Zeit mit Fußballspielen, dann ist dieser Anteil der größte im Diagramm.
LösungSo kannst du den Text vervollständigen:
„Ein Kreisdiagramm ist ein besonderes Diagramm in Form eines Kreises. Es hilft uns dabei, Anteile miteinander zu vergleichen“.
Es gibt verschiedene Diagrammtypen. Diese verwendet man häufig für unterschiedliche Zwecke. In einem Kreisdiagramm lassen sich sehr gut die einzelnen Anteile untereinander vergleichen. Es gibt zum Beispiel aber auch Säulen- oder Balkendiagramme.„Die Anteile werden in Sektoren dargestellt. Das sind einzelne Kreisausschnitte, die die Form von Pizzastücken haben und deren Spitze immer auf dem Mittelpunkt des Kreises liegen. Je mehr Zeit Otto mit einer gewissen Aktivität verbracht hat, desto größer ist der Anteil. Der kleinste Anteil des Kreisdiagramms repräsentiert demnach die Aktivität, mit der sich Otto am wenigsten beschäftigt hat.“
Um Anteile vom Ganzen in einem Kreisdiagramm darzustellen, teilt man den Kreis in entsprechend große Sektoren ein. Diese Sektoren sind sogenannte Kreisausschnitte, also nur Teile des Kreises. Je größer der Anteil vom Ganzen ist, desto größer ist auch der Kreisausschnitt.„Die Summe aller Anteile des Kreises, ergibt dann die Gesamtheit aller Aktivitäten, die Otto in den Ferien gemacht hat. War Otto beispielsweise an $6$ von $40$ Tagen in der Tiefsee tauchen, dann entspricht dieser Anteil der $\frac{6}{40}$ des gesamten Kreises.“
Die Anteile eines Kreisdiagramms lassen sich immer auch als Bruch darstellen. Addiert man alle Anteile und somit alle Brüche eines Kreisdiagramms, erhält man immer $1$ als Summe dieser Anteile.„Um für einen Kreissektor den entsprechenden Winkel zu berechnen, multiplizieren wir den jeweiligen Anteil mit dem vollen Winkel eines Kreises, also $360°$. Der Anteil von $\frac{14}{40}$ entspricht somit einem Winkel von $126°$.“
Um den Anteil mit $360°$ zu multiplizieren, schreiben wir ihn als Bruch. Beträgt der Anteil also zum Beispiel $\frac{14}{40}$, dann rechnen wir: $\frac{14}{40} \cdot 360° = 126°$. -
Ordne die Anteile den passenden Winkelgrößen zu.
TippsInsgesamt wurden $1000\,\text{€}$ ausgegeben. Das entspricht den vollen $360°$ des Kreises. $500\,\text{€}$ entsprechen demnach $180°$.
Der entsprechende Winkel lässt sich auch mit folgender Formel berechnen:
$\frac{\text{Anteil}}{1000\,\text{€}} \cdot 360°$.
Anteil meint hier den jeweils ausgegebenen Betrag.
Für den Fall, dass beispielsweise $400\,\text{€}$ ausgegeben wurden, lässt sich der Winkel so ausrechnen:
$\frac{400\,\text{€}}{1000\,\text{€}} \cdot 360° = \frac{2}{5}\cdot 360° = 144°$.
LösungZur Berechnung des Winkels multiplizieren wir den entsprechenden Anteil (als Bruch) mit den vollen $360°$ des Kreises. Den Anteil erhalten wir, indem wir den jeweiligen Wert durch das Ganze, also in diesem Fall $1000 \text{€}$, teilen. So schreiben wir beispielsweise, dass $600\,\text{€}$ von $1000\,\text{€}$ dem Bruch $\frac{600\,\text{€}}{1000\,\text{€}}$ entspricht.
Die Winkel berechnen sich also folgendermaßen:
- Ausgaben von $600\,\text{€}$: $\frac{600\,\text{€}}{1000\,\text{€}} \cdot 360° = 216°$
- Ausgaben von $200\,\text{€}$: $\frac{200\,\text{€}}{1000\,\text{€}} \cdot 360° = 72°$
- Ausgaben von $150\,\text{€}$: $\frac{150\,\text{€}}{1000\,\text{€}} \cdot 360° = 54°$
- Ausgaben von $50\,\text{€}$: $\frac{50\,\text{€}}{1000\,\text{€}} \cdot 360° = 18°$.
-
Ermittle die Anteile.
Tipps$180°$ entsprechen beispielsweise $250$ Pizzen. Du kannst den Dreisatz verwenden, um die entsprechende Anzahl an Pizzen zu berechnen.
$\dfrac{\text{Anteil}}{\text{Ganzes}} \cdot 360° = \text{Winkel des Kreissegments}$
kannst du umstellen zu:
$\dfrac{\text{Winkel des Kreissegments}}{360°} \cdot \text{Ganzes} = \text{Anteil}$.
Das Ganze sind $500$ Pizzen.
$500$ Pizzen entsprechen $360°$.
Somit entsprechen $\frac{25}{18}$ Pizzen $1°$.
LösungWir können die Anteile entweder mit dem Dreisatz oder mit der Formel $\frac{\text{Winkel des Kreissegments}}{360°} \cdot \text{Ganzes} = \text{Anteil}$ berechnen. Für den Dreisatz berechnen wir zunächst den Anteil, der einem Grad im Kreis entspricht. Das sind $\frac{25}{18}$. Nun multiplizieren wir mit dem entsprechenden Winkel und erhalten den dazugehörigen Anteil an Pizzen. Mit der Formel berechnen sich die Anteile wie folgt:
- Pizza Salame: $\frac{72°}{360°} \cdot 500 = 100$
- Pizza Funghi: $\frac{36°}{360°} \cdot 500 = 50$
- Pizza Tonno: $\frac{14,4°}{360°} \cdot 500 = 20$
- Pizza Vegetariana: $\frac{54°}{360°} \cdot 500 = 75$
- Pizza Hawaii: $\frac{3,6°}{360°} \cdot 500 = 5$
- Pizza Margarita: $\frac{108°}{360°} \cdot 500 = 150$
- Pizza Mozzarella: $\frac{28,8°}{360°} \cdot 500 = 40$
- Pizza Prosciutto: $\frac{43,2°}{360°} \cdot 500 = 60$.
-
Bestimme das korrekte Kreisdiagramm und die passenden Winkel.
TippsDie Aktivität, für die Otto die meiste Zeit seine Ferien verbracht hat, ist mit dem größten Kreissektor dargestellt.
Je größer ein Anteil ist, desto größer ist der entsprechende Kreissektor.
Hat Otto $4$ von $16$ Tagen Eis gegessen, kann man den Winkel des zugehörigen Sektors wie folgt ermitteln:
$\dfrac{4}{16} \cdot 360^\circ = \dfrac{1}{4} \cdot 360^\circ=90^\circ$.
LösungWir sehen hier das korrekte Kreisdiagramm. Die meiste Zeit seiner Ferien hat Otto mit Fußballspielen verbracht. Insgesamt hat er an $20$ von $40$ Tagen Fußball gespielt. Das ist die Hälfte der gesamten Zeit. Insofern muss auch das rote Kreissegment, welches für das Fußballspielen steht, die Hälfte des Kreises einnehmen.
$\frac{1}{4}$ der Zeit hat er am Strand verbracht. Das sind $10$ von $40$ Tagen. Somit muss dieser Anteil auch dem zweitgrößten Segment des Kreises entsprechen. Dies ist hier beim gelben Segment auch der Fall.
An $4$ von $40$ Tagen war er im Kino. Das ist der geringste Anteil. Somit muss auch das entsprechende blaue Kreissegment das kleinste Segment sein.
Somit bleibt nur noch ein Kreissegment übrig. Es ist das grüne Kreissegment, das für „Eis essen“ steht. Das hat Otto an $6$ von $40$ Tagen gemacht und somit ist es das drittgrößte Segment.
Den passenden Winkel können wir wie folgt herausfinden und berechnen:
An $20$ von $40$ Tagen spielt er Fußball. Das entspricht genau der Hälfte aller Tage. Somit ist der passende Winkel auch exakt die Hälfte des Vollwinkels eines Kreises. Das sind dann $180°$.
Einen weiteren korrekten Winkel kann man über den Dreisatz berechnen. $40$ Tage entsprechen $360°$. Wenn wir wissen wollen, wie viel Grad $4$ Tagen entsprechen, rechnen wir wie folgt:$\begin{array}{llrll} 40~ \text{Tage} & \widehat{=} & 360° &\vert& : 40 \\ 1~ \text{Tag} & \widehat{=} & 9° &\vert& \cdot ~4 \\ 4~ \text{Tage} & \widehat{=} & 36°. \end{array}$
-
Bestimme den Winkel des entsprechenden Kreisausschnitts und die Gesamtzahl des Kreisdiagramms.
TippsDer Kreis hat einen vollen Winkel von $360°$.
Zur Berechnung der Anteile und des Ganzen kannst du den Dreisatz verwenden.
Beispiel:
$\begin{array}{lll} 3~ \text{Tage} & \widehat{=} & 90°\\ 1~ \text{Tag} & \widehat{=} & 30°\\ 12~ \text{Tage} & \widehat{=} & 360° \end{array}$
LösungDer Kreis hat einen vollen Winkel von $360°$. In allen Kreisdiagrammen sind bis auf ein Kreissegment alle Winkel gegeben. Der fehlende Winkel muss also in der Summe mit den anderen Winkeln stets $360^\circ$ ergeben. Zur Berechnung können wir von $360^\circ$ auch die bereits gegebenen Winkel jeweils subtrahieren.
Erstes Kreisdiagramm:
Es gilt: $360° - 120° - 60° = 80°.$
Der Winkel des letzten Kreissegments beträgt also $80°.$Es war die Gesamtzahl der Urlaubstage gesucht. Hier gilt dann:
$\begin{array}{llrll} 120° & \widehat{=} & 6~ \text{Tagen} &\vert& : 120\\ 1° & \widehat{=} & \frac{1}{20}~ \text{Tagen} &\vert& \cdot ~360\\ 360° & \widehat{=} & 18~ \text{Tagen.} \end{array}$
Zweites Kreisdiagramm:
Wir können Folgendes rechnen: $360° - 108° - 72° - 86,4° - 36° = 57,6°.$
Der fehlende Winkel dieses Kreissegments beträgt also $57,6°.$Bei Diagramm $2$ war die Anzahl des verkauften Stracciatellaeises gesucht. Auch hier kann der Dreisatz benutzt werden:
$\begin{array}{llrll} 108° & \widehat{=} & 150 ~\text{Kugeln} &\vert& :108\\ 1° & \widehat{=} & \frac{25}{18} ~ \text{Kugeln} &\vert& \cdot ~57,6\\ 57,6° & \widehat{=} & 80~\text{Kugeln.} && \end{array}$
Die Gesamtzahl an verkauften Eiskugeln lässt sich nun auch sehr leicht ermitteln. Hier gilt: $\begin{array}{llrll} 108° & \widehat{=} & 150~ \text{Kugeln} &\vert& : 108\\ 1° & \widehat{=} & \frac{25}{18}~ \text{Kugeln} &\vert& \cdot ~360\\ 360° & \widehat{=} & 500~ \text{Kugeln.} \end{array}$
Drittes Kreisdiagramm:
Wir rechnen wie folgt: $360° - 94° - 18° - 56° - 105,5° - 25° = 61,5°.$
Hier beträgt der gesuchte Winkel also $61,5°$.Um zu ermitteln, wieviele Personen den $61,5°$ entsprechen, können wir wieder den Dreisatz benutzen. Hierzu können wir die Information, dass $94°$ genau $188$ Personen entsprechen, benutzen:
$\begin{array}{llrll} 94° & \widehat{=} & 188 ~\text{Personen} &\vert& : 94\\ 1° & \widehat{=} &2~\text{Personen} &\vert& \cdot~ 61,5\\ 61,5° & \widehat{=} & 123~\text{Personen.} && \\ \end{array}$
Es war die Gesamtzahl der wählenden Schüler*innen gesucht. Hier gilt dann: $\begin{array}{llrll} 94° & \widehat{=} & 188~ \text{Personen} &\vert& : 94\\ 1° & \widehat{=} & 2~ \text{Personen} &\vert& \cdot ~360\\ 360° & \widehat{=} & 720~ \text{Personen.} \end{array}$
8'883
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'388
Lernvideos
36'076
Übungen
32'624
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel
eins stimmt zumindest: er ist wirklich von einer sterneköchin bekocht worden! Omas kochen halt einfach besser als jede*r andere*r Sternekoch/Sterneköchin! Was soll man da machen?
Guckt doch mal genau bei 0:05 dieser Otto ist doch der eine Junge aus dem einen Profilbild😂 Und tolles und hilfreiches Video übrigens ;)
er hat einfach auf ein drachen geritten -_-
LOVE IT
Sehr gut erklärt.
👍👍👍