Winkel und parallele Geraden mit dem Geodreieck zeichnen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Winkel und parallele Geraden mit dem Geodreieck zeichnen
Nach dem Schauen dieses Videos wirst du in der Lage sein, das Geodreieck als Werkzeug zu nutzen.
Zunächst lernst du, wie du senkrechte Geraden zeichnen kannst. Anschließend lernst du, wie du mit dem Geodreieck Winkel zeichnen kannst. Abschließend lernst du, wie du parallele Geraden zeichnest.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Geodreieck, Zeichenkante, Mittellinie, Winkelgrad-Markierungen, Schenkel, Scheitelpunkt, rechter Winkel, senkrecht und parallel
Bevor du dieses Video schaust, solltest du bereits wissen, was ein Winkel ist.
Nach diesem Video wirst du darauf vorbereitet sein, zu lernen bestimmte Formen wie Drei- und Vierecke mit dem Geodreieck zu konstruieren.
Transkript Winkel und parallele Geraden mit dem Geodreieck zeichnen
Das Gleisdreieck. Ein echt nützliches Werkzeug. Zum Beispiel um das Sonnenlicht zu reflektieren. Wie du „Winkel und parallele Geraden mit dem Geodreieck zeichnen“ kannst, erfährst du in diesem Video. Lass es uns also nochmal genauer anschauen: das Geodreieck. Unverzichtbarerer Begleiter im Matheunterricht, vor allem wenn das Thema Geometrie heißt. Doch wie genau ist so ein Geodreieck eigentlich aufgebaut? An der längsten Seite haben wir die Zeichenkante, die du auch als einfaches Lineal verwenden kannst. Sie ist in Zentimeter eingeteilt. Genau in der Mitte liegt der Nullpunkt. Dort beginnt auch die Mittellinie, die senkrecht – also genau im neunzig-Grad-Winkel – zur Zeichenkante verläuft und das Geodreieck in zwei gleich große Hälften teilt. Außerdem finden wir auf dem Geodreieck parallele Hilfslinien, die du gut zum Zeichnen von Parallelen nutzen kannst. Ein super nützliches Hilfsmittel sind zu guter Letzt die Winkelmarkierungen. Es gibt eine innere Winkelskala, und eine äußere Winkelskala. Die äußere Winkelskala ist bei diesem Geodreieck farbig hinterlegt. Mit beiden können wir jeweils einen Winkel zwischen null und einhundertachtzig Grad messen oder auch einzeichnen. Wie du siehst, hat das Geodreieck einiges zu bieten. Wie es zum Einsatz kommt, schauen wir uns jetzt einmal genauer an. Wir können das Geodreieck zum Beispiel nutzen um eine senkrechte zu zeichnen. Das ist ganz einfach. Wir müssen nur die Mittellinie genau auf die Gerade legen, zu der wir eine Senkrechte konstruieren. Und den Nullpunkt dort anlegen, wo die Senkrechte die Gerade schneiden soll. Dann können wir die Senkrechte entlang der Zeichenkante einzeichnen. Und so haben wir auch schon unseren ersten Winkel eingezeichnet. Nämlich einen neunzig-Grad-Winkel. Doch mit dem Geodreieck können wir auch einen Winkel einer beliebigen anderen Größe einzeichnen. Zum Beispiel einen sechzig-Grad-Winkel Zuerst zeichnen wir einen Schenkel und markieren den Scheitelpunkt S. Dann haben wir zwei Möglichkeiten: Erstens können wir den Winkel zeichnen, indem wir das Geodreieck drehen. Dafür setzen wir den Nullpunkt an den Scheitelpunkt. Nun können wir die Winkelmarkierungen betrachten. Wir brauchen die Skala, die am Schenkel bei Null Grad beginnt. Das ist die innere Winkelskala. Jetzt drehen wir das Geodreieck – und zwar immer gegen den Uhrzeigersinn – so lange bis die sechzig-Grad-Markierung genau auf dem Schenkel liegt. Dabei immer darauf achten, dass der Nullpunkt auch wirklich noch auf den Scheitelpunkt liegt! Von dort aus können wir den zweiten Schenkel dann einzeichnen. Und schon haben wir einen sechzig-Grad-Winkel gezeichnet! Lass uns auch noch ein Beispiel für die zweite Möglichkeit anschauen. Wir zeichnen einen einhundertdreißig-Grad-Winkel. Dieses mal wollen wir den Winkel am Geodreieck markieren. Wieder beginnen wir mit dem Scheitelpunkt und dem ersten Schenkel. Der Nullpunkt des Geodreiecks muss erneut genau auf dem Scheitelpunkt liegen. Dann betrachten wir wieder die Skala, die am Schenkel bei null Grad beginnt. Dieses mal ist es die äußere Skala. An dieser können wir jetzt die benötigte Winkelmarkierung suchen, und dort einen Punkt bei einhundertdreißig Grad markieren. Zum Schluss müssen wir nur noch den Scheitelpunkt mit dem markierten Punkt verbinden. Diese Strecke ist unser zweiter Schenkel. Dann haben wir auch den einhundertdreißig-Grad-Winkel gezeichnet. Ob du Winkel zeichnest, indem du das Geodreieck drehst oder indem du sie am Geodreieck markierst, ist egal. Du kannst ja mal ausprobieren, welche Technik dir besser gefällt! Zum Abschluss schauen wir uns noch an, wie wir mit dem Geodreieck Parallelen zeichnen. Dazu brauchen wir erstmal eine Gerade g. Dann gibt es wieder zwei Möglichkeiten. Für kleinere Abstände könne wir die parallelen Hilfslinien des Geodreiecks nutzen. Um zum Beispiel eine Parallele im Abstand von zwei Zentimeter einzuzeichnen, legen wir die mit einer zwei markierten Hilfslinie auf unsere Gerade und können dann die Parallele h einzeichnen. Für größere Abstände brauchen wir allerdings eine andere Technik. Eine Parallele im Abstand von sechs Zentimetern können wir nämlich nicht mehr mit den Hilfslinien zeichnen. Also wenden wir einen kleinen Trick an: Wir zeichnen eine senkrechte Hilfsgerade zu unserer Geraden, und markieren den Abstand von genau sechs Zentimetern. Dann können wir an diesem Punkt eine zweite Senkrechte einzeichnen, und schon sind wir fertig! Die eingezeichnete Gerade ist parallel zu der ersten Geraden und hat einen Abstand von sechs Zentimetern. Alles klar, Zeit für eine Zusammenfassung! Mit dem Geodreieck können wir senkrechte Geraden zeichnen. Um eine Senkrechte zu zeichnen, nutzen wir die Mittellinie Zur Konstruktion von Parallelen können wir eine solche Senkrechte nutzen oder die parallelen Hilfslinien des Geodreiecks verwenden. Außerdem können wir die Winkelmarkierungen nutzen, um Winkel zu zeichnen. Entweder, indem wir das Geodreieck drehen oder, indem wir den Winkel am Geodreieck markieren. Wir halten also fest: Das Geodreieck ist ein ziemlich flexibles Werkzeug, das in den verschiedensten Situationen nützlich ist! Zum Beispiel wenn wir den Winkel skizzieren wollen, den wir brauchen um die einfallenden Sonnenstrahlen genau an die richtige Stelle zu reflektieren.
Winkel und parallele Geraden mit dem Geodreieck zeichnen Übung
-
Gib an, welche Zeichnung auf den Bildern dargestellt ist.
-
Beschreibe, wie man einen -Winkel durch Drehen des Geodreiecks zeichnen kann.
-
Bestimme die passenden Winkelgrößen, die beim Zeichnen entstehen.
-
Überprüfe die Aussagen zum Zeichnen von Parallelen mit dem Geodreieck.
-
Benenne die einzelnen Elemente des Geodreiecks.
-
Beschreibe, wie man einen -Winkel mit dem Geodreieck zeichnet.
9'226
sofaheld-Level
6'600
vorgefertigte
Vokabeln
7'669
Lernvideos
37'129
Übungen
32'378
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
es heißt geobreideck
Thank you very much 😊 for the help and 👋 bye
ich hab es endlich verstanden bei sofatutor als es meine lehrerin erklärt hat habe ich es nicht verstanden
dankeschön sofatutor
das video hilft Seher cooooooooooooooooooooooool
Also es ist toll erklärt