Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen
Strecken und Winkel mit Zirkel und Lineal übertragen: Erfahre, wie du Längen und Winkel ohne Lineal überträgst. Mit dem Zirkel lassen sich Strecken einfach kopieren, und mit einem einfachen Trick können auch Winkel übertragen werden. Neugierig geworden? All das und noch mehr erwartet dich im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen
Konstruktionen mit Zirkel und Lineal
In der Geometrie, einem Teilgebiet der Mathematik, sind Zirkel, Lineal und Geodreieck deine wichtigsten Werkzeuge zum Konstruieren von geometrischen Figuren. Viele Grundkonstruktionen kommen sogar ohne das Geodreieck aus. So zum Beispiel das Übertragen von Winkeln und Strecken mit Zirkel und Lineal, das hier einfach erklärt wird.
Wie kann man eine Strecke mit einem Lineal oder mit einem Zirkel übertragen?
Strecken kannst du durch Abmessen mit dem Lineal übertragen. Dafür misst du die Originalstrecke und merkst dir, was du gemessen hast. Diese Länge trägst du nun auf einer beliebigen Geraden ab.
Du kannst eine Strecke aber auch ganz ohne Lineal und ohne Messen der Länge übertragen. Hierfür benötigst du nur einen Zirkel.
Anleitung: eine Strecke mit dem Zirkel übertragen
- Du hast eine Strecke gegeben. Steche deinen Zirkel in Punkt ein.
- Stelle die Öffnung des Zirkels exakt auf die Länge ein. Behalte diesen Radius bei.
- Nun stichst du mit der Zirkelspitze in den Punkt auf einer Geraden .
- Zeichne einen Kreisbogen, der die Gerade schneidet. Der Schnittpunkt des Kreisbogens mit der Gerade ist der Punkt .
So hast du die Strecke auf der Geraden gezeichnet, die genauso lang wie die Strecke ist.
Wie kann ich einen Winkel mit einem Zirkel übertragen?
Mit Zirkel und Lineal können wir auch einen Winkel zeichnen, den wir von einem gegebenen Winkel übertragen. Das funktioniert, auch wenn wir die Größe des Winkels nicht kennen.
Anleitung: einen Winkel mit dem Zirkel übertragen
- Gegeben sind zwei Geraden und , die sich im Punkt unter dem Winkel schneiden.
- Zeichne eine Hilfsgerade und markiere auf dieser den Punkt .
- Zeichne einen Kreisbogen um den Punkt , der die Geraden und schneidet, und benenne die Schnittpunkte mit und . Je größer du den Kreisbogen zeichnest, desto leichter fallen die nächsten Schritte. Stelle den Radius, mit dem du den Kreisbogen gezeichnet hast, bei deinem Zirkel fest ein.
- Steche nun mit der Spitze des Zirkels in den Punkt , den du vorher gezeichnet hast. Zeichne ebenfalls einen Kreisbogen mit dem im Zirkel eingestellten Radius. Dieser muss die Gerade schneiden. Den Schnittpunkt nennen wir .
- Stelle nun den Zirkel exakt auf die Länge ein, indem du die Spitze in stichst und einen Kreisbogen durch andeutest.
- Zeichne mit diesem Radius einen Kreisbogen durch , der den ersten Kreisbogen um schneidet. Diesen Schnittpunkt nennen wir .
- Zeichne nun mit dem Lineal eine Gerade durch die Punkte und . Diese Gerade bezeichnen wir mit .
Der Schnittwinkel, der so konstruierten Geraden und entspricht dem Winkel zwischen und . Man sagt: Wir haben den Winkel übertragen.
Winkel und Strecken mit Zirkel und Lineal übertragen – Zusammenfassung
- Eine Strecke überträgst du mit einem Lineal, indem du die Länge der Strecke misst und dann dieselbe Länge auf eine beliebige Gerade abträgst.
- Um eine Strecke mit dem Zirkel zu übertragen, stellst du den Zirkel zunächst auf die Länge der Strecke ein. Danach trägst du die Strecke mit dem eingestellten Zirkel auf eine beliebige Gerade ab.
- Um einen Winkel mit dem Zirkel zu übertragen, zeichnest du zunächst einen Kreisbogen um den Scheitel des Winkels und überträgst diesen auf eine Hilfsgerade. Dann stellst du den Zirkel auf den Abstand der Schnittpunkte des Kreisbogens mit den beiden Schenkeln des Winkel ein und ziehst damit einen Kreis durch den Schnittpunkt des ersten Kreisbogens mit der Hilfsgeraden. Der zweite Schenkel des übertragenen Winkels verläuft durch den Mittelpunkt des ersten Kreises und den Schnittpunkt der beiden Kreisbogen.
Auf dieser Seite findest du außerdem Arbeitsblätter mit Beispielen und interaktive Übungen zum Thema Strecken und Winkel mit Zirkel und Lineal übertragen.
Transkript Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen
Karl Konrad, der königliche Kartograph, hat einen neuen Auftrag von seiner Majestät, der Königin. Diese möchte mit ihrer Schiffsflotte auf Reisen gehen. Damit alle ankommen, braucht jedes Schiff dieselbe Karte mit identischen Routen. Karl muss sich beim Zeichnen der Karten deshalb ausgesprochen gut damit auskennen, wie man Strecken und Winkel überträgt. Zum Übertragen von Strecken und Winkeln benötigen wir nur einen Zirkel und ein Lineal. Das Lineal verwendet Karl allerdings nicht zum Messen, sondern lediglich dazu, um gerade Linien zu zeichnen. Schauen wir uns zunächst an, wie man Strecken überträgt. Hier sehen wir die Strecke AB. Die exakte Länge ist uns unbekannt. Dennoch können wir diese Strecke auf eine andere Gerade h übertragen. Auf dieser Geraden zeichnen wir einen Punkt A-Strich ein. Mit dem Zirkel stechen wir nun in den Punkt A ein. Die Öffnung des Zirkels stellen wir exakt auf die Länge der Strecke AB ein. Diesen Radius behalten wir bei, stechen nun in A-Strich ein und zeichnen einen Kreisbogen um A-Strich. Der Kreisbogen muss so gezeichnet werden, dass er die Gerade h schneidet. Den Schnittpunkt des Kreisbogens mit der Geraden h nennen wir B-Strich. Die Strecke A-Strich, B-Strich ist genauso lang wie die Strecke AB. Somit haben wir die Strecke AB auf die Gerade h übertragen. Mit Zirkel und Lineal können wir auch Winkel übertragen. Die Geraden g und h schneiden sich im Punkt P und mit dem Winkel Alpha. Dessen genaue Größe kennen wir nicht. Um den Winkel zu übertragen, zeichnen wir zunächst eine Hilfsgerade g-Strich und markieren darauf einen Punkt P-Strich. Nun wollen wir um P einen Kreisbogen zeichnen. Je größer wir den Radius des Kreisbogens wählen, desto leichter lässt sich der Winkel übertragen. Wichtig ist dabei, dass g und h geschnitten werden. Die Schnittpunkte nennen wir S1 und S2. Mit dem gleichen Radius stechen wir nun in P-Strich ein und zeichnen ebenfalls einen Kreisbogen. Dieser muss die Gerade g-Strich schneiden. Den Schnittpunkt nennen wir S3. Anschließend stellen wir den Zirkel exakt auf die Länge der Strecke S1S2 ein. Mit diesem Radius zeichnen wir dann einen Kreisbogen um S3, der den Kreisbogen um P-Strich schneidet. Diesen Schnittpunkt nennen wir S4. Abschließend zeichnen wir eine Gerade durch P-Strich und S4. Wir bezeichnen die Gerade mit h-Strich. Mit dem Winkel Alpha schneiden sich auch die Geraden g-Strich und h-Strich. Lass uns das noch einmal zusammenfassen: Um eine Strecke zu übertragen, stellst du den Zirkel zunächst auf die Länge der Strecke ein. Danach kannst du die Strecke mit dem eingestellten Zirkel auf eine beliebige Gerade übertragen. Zum Übertragen von Winkeln verwendest du ebenfalls einen Zirkel. Dazu zeichnest du einen Kreisbogen um den Schnittpunkt der beiden Geraden und überträgst diesen auf eine Hilfsgerade. Dann überträgst du diesen Abstand auf den Kreisbogen an der Hilfsgeraden. Der so entstandene Winkel ist genauso groß wie der ursprüngliche. Karl Konrad hat endlich alle Karten fertig gezeichnet. Nun kann er sich dem Sonderauftrag der Königin widmen.
Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen Übung
-
Bestimme die korrekten Aussagen zum Übertragen von Strecken.
-
Beschreibe das Übertragen von Winkeln.
-
Erschließe die richtigen Konstruktionsschritte.
-
Ermittle, wo die übertragenen Strecken enden.
-
Gib die richtige Reihenfolge der Konstruktionsschritte an.
-
Erläutere, warum das Übertragen von Strecken und Winkeln so funktioniert.
9'172
sofaheld-Level
6'600
vorgefertigte
Vokabeln
7'605
Lernvideos
35'609
Übungen
32'354
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal
ich schreibe morgen eine matheabeit bestimmt werde ich eine eins oder eine zwei
ssssssssssssssssüüüüüüüüüüüüüüüü ich habe eine eins und zweien im Zeugnis
Mir gefällt es auch😃
Ich bin neu bei Sofatutor und habe mich verbessert. Ich bin in der vierten.
capybara