Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Teilermenge und Vielfachenmenge

Erfahre, was Teiler und Vielfache sind und wie man die Teilermenge und Vielfachenmenge einer Zahl bestimmt. Lerne, wie diese Konzepte in der Bruchrechnung hilfreich sind. Interessiert? Das und mehr kannst du im folgenden Text entdecken!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Teilermenge und Vielfachenmenge

Was sind Teiler?

1/5
Bereit für eine echte Prüfung?

Das Teilermenge Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.3 / 299 Bewertungen
Die Autor*innen
Avatar
Team Digital
Teilermenge und Vielfachenmenge
lernst du in der Primarschule 5. Klasse - 6. Klasse

Grundlagen zum Thema Teilermenge und Vielfachenmenge

Teilermenge und Vielfachenmenge bestimmen – Mathe

In diesem Text werden Teilermenge und Vielfachenmenge einfach erklärt. Es werden die Begriffe Teiler und Vielfaches wiederholt und du lernst die Definitionen der Begriffe Teilermenge und Vielfachenmenge kennen. Zudem werden die Fragen geklärt, wie man die Teilermenge und Vielfachenmenge einer Zahl findet. Wir beschränken uns in diesem Text auf natürliche Zahlen ohne die Null.

Was ist ein Teiler? – Definition

Schauen wir uns zunächst an, was wir unter dem Begriff Teiler verstehen:

  • Wird eine Zahl durch einen ihrer Teiler geteilt, so bleibt kein Rest übrig.

Da die Zahl $12$ ohne Rest durch die Zahlen $1, 2, 3, 4, 6$ und $12$ teilbar ist, sind diese Zahlen Teiler der Zahl $12$.

$12:1=12$
$12:2=6$
$12:3=4$
$12:4=3$
$12:6=2$
$12:12=1$

Nicht ohne Rest teilbar ist die $12$ durch die Zahlen $5,7,8,9,10$ und $11$.

$12:5=2 \,\text{Rest}\, 2$
$12:7=1 \,\text{Rest}\, 5$
$12:8=1 \,\text{Rest}\, 4$
$12:9=1 \,\text{Rest}\, 3$
$12:10=1 \,\text{Rest}\, 2$
$12:11=1 \,\text{Rest}\, 1$

Durch eine Zahl, die größer als $12$ ist, kann diese ebenfalls nicht geteilt werden. Die Zahlen $5,7,8,9,10,11$ sowie Zahlen größer als die $12$ sind somit keine Teiler der Zahl $12$. Die Zahl $12$ hat nur die Teiler $1,2,3,4,6$ und $12$.

Was ist eine Teilermenge? – Definition

Was verstehen wir unter dem Begriff der Teilermenge?

  • Alle Teiler einer Zahl bilden zusammen die Teilermenge dieser Zahl.

Geschrieben wird diese Menge in geschweiften Klammern. Die Teiler werden durch ein Semikolon getrennt. Ein großes $T$ bezeichnet die Teilermenge. Unten an das $T$ wird die Zahl geschrieben, auf welche sich die Teilermenge bezieht. Das Beispiel zeigt die Teilermenge der Zahl $12$.

$T_{12}= \lbrace 1; 2; 3; 4; 6; 12\rbrace$

Die Teilermenge ist eine wichtige Grundlage für die Bruchrechnung. Dort ist es hilfreich, den größten gemeinsamen Teiler zweier Zahlen zu kennen.

Wie kann man die Teilermenge berechnen?

Es gibt verschiedene Methoden, um die Teilermenge einer Zahl zu bestimmen. Bei kleineren Zahlen kann man alle Teiler durch schriftliche Division herausfinden. Diese Methode wird jedoch bei größeren Zahlen immer aufwendiger, weshalb es verschiedene Regeln gibt, an welchen man sich orientieren kann. So können wir uns merken:

  • Jede natürliche Zahl größer als null ist durch $\bf{1}$ teilbar.
  • Jede natürliche Zahl größer als null ist durch sich selbst teilbar.

Alle Zahlen zwischen diesen beiden können durch die Teilbarkeitsregeln oder durch die schriftliche Division ermittelt werden. Teilen wir eine Zahl durch einen ihrer Teiler, so ist das Ergebnis ebenfalls ein Teiler dieser Zahl. Somit ermitteln wir mit einer Rechnung immer bereits zwei Teiler. Stoßen wir beim Rechnen auf einen Teiler, welchen wir bereits als Ergebnis erhalten haben, so haben wir alle Teiler ermittelt. Die Teilermenge setzt sich zusammen aus den ermittelten Teilern und den Ergebnissen der Divisionen.

$60:1=60$
$60:2=30$
$60:3=20$
$60:4=15$
$60:5=12$
$60:6=10$
$60:10=6$

Die $10$ haben wir bereits vorher als Ergebnis erhalten, weshalb wir an diesem Punkt stoppen können. Die Teilermenge der Zahl $60$ lautet nun:

$T_{60}= \lbrace 1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60\rbrace$

Was sind Vielfache? – Definition

Schauen wir uns zunächst an, was wir unter dem Begriff Vielfaches verstehen:

  • Multipliziert man eine Zahl mit einer beliebigen natürlichen Zahl größer als null, so erhält man ein Vielfaches dieser Zahl.

Jede Zahl hat unendlich viele Vielfache, da es unendlich viele natürliche Zahlen größer als null gibt.

$12 \cdot 1= 12$
$12 \cdot 2 = 24$
$12 \cdot 3 = 36$
$12 \cdot 4 = 48$
$12 \cdot 5 = 60$
$…$

Was ist eine Vielfachenmenge? – Definition

Was verstehen wir unter dem Begriff der Vielfachenmenge?

  • Alle Vielfache einer Zahl bilden zusammen die Vielfachenmenge dieser Zahl.

Auch diese Menge wird in geschweiften Klammern geschrieben und die einzelnen Vielfachen werden durch ein Semikolon getrennt. Ein großes $V$ bezeichnet die Vielfachenmenge. Unten an das $V$ wird die Zahl geschrieben, auf welche sich die Vielfachenmenge bezieht. Das Beispiel zeigt die Vielfachenmenge der Zahl $12$.

$V_{12}= \lbrace 12; 24; 36; 48; 60; …\rbrace$

Die Vielfachenmenge kann nie vollständig angegeben werden, da jede Zahl unendlich viele Vielfache hat.

Die Vielfachenmenge ist eine wichtige Grundlage für die Bruchrechnung. Dort ist es hilfreich, das kleinste gemeinsame Vielfache zweier Zahlen zu kennen.

Wie bestimmt man die Vielfachenmenge?

Um die Vielfachenmenge einer Zahl zu bestimmen, muss man diese lediglich mit einigen natürlichen Zahl größer als null multiplizieren. Theoretisch müsste man sie mit allen natürlichen Zahlen multiplizieren. Da dies jedoch unendlich viele sind, ist das in der Praxis nicht umsetzbar. Häufig werden die ersten fünf Vielfachen einer Zahl angegeben, manchmal ist in Aufgabenstellungen jedoch auch eine bestimmte Anzahl gewünscht.

Teilermenge und Vielfachenmenge – Zusammenfassung

Die folgenden Stichpunkte fassen noch einmal das Wichtigste zum Thema Teilermenge und Vielfachenmenge zusammen.

  • Ein Teiler einer Zahl teilt diese Zahl ohne Rest.
  • Die Gesamtheit aller Teiler einer Zahl wird in der Teilermenge erfasst.
  • Ein Vielfaches einer Zahl erhält man, wenn man diese Zahl mit einer beliebigen natürlichen Zahl größer als null multipliziert.
  • Die Gesamtheit aller Vielfache einer Zahl wird in der Vielfachenmenge erfasst.

Weißt du, was die Teilermengen der Zahlen $24$ oder $36$ sind? Zusätzlich zum Text und dem Video findest du hier auf der Seite noch Arbeitsblätter und Übungen zum Thema Teilermenge und Vielfachenmenge. Dort kannst du dein Wissen testen.

Teste dein Wissen zum Thema Teilermenge!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Teilermenge und Vielfachenmenge

Schweinemama Sybille ist mächtig im Stress. Ihre 12 Ferkelchen haben bald Geburtstag - wie jedes Jahr alle gleichzeitig. Um auf Ideen für die Geburtstagsfeier zu kommen, schaut sie sich alte Fotos an. Die Ferkelchen spielen gerne alle zusammen oder in Gruppen oder auch mal allein. Nur eines ist wichtig: Die Ferkelchen dürfen nicht in unterschiedlich große Gruppen eingeteilt werden - denn dann gibt es Streit. Um die möglichen Gruppenaufteilungen herauszufinden, beschäftigt sich Sybille mit dem Thema Teilermenge und Vielfachenmenge. In diesem Video wiederholen wir zunächst die Begriffe Teiler und Vielfaches und klären dann, was die Teilermenge einer Zahl und was die Vielfachenmenge einer Zahl ist. Wir beschränken uns dabei auf die natürlichen Zahlen ohne die Null. Beginnen wir mit den Teilern: Teilt man eine Zahl durch einen ihrer Teiler, bleibt kein Rest übrig. So ist zum Beispiel die Zahl 12 ohne Rest durch 1, 2, 3, 4, 6 und 12 teilbar. Diese Zahlen sind also Teiler der Zahl 12. Sybille kann ihre Ferkelchen daher in Gruppen zu 6, 4, 3 oder 2 Ferkelchen einteilen oder alle 12 Ferkelchen spielen zusammen oder jedes für sich. Durch 5, 7, 8, 9, 10 oder 11 ist 12 dagegen nicht ohne Rest teilbar. Und 12 kann erst recht nicht durch eine Zahl geteilt werden, die größer als 12 ist. Diese Zahlen sind deshalb keine Teiler der 12 und Sybille kann keine Gruppen dieser Größen bilden ohne, dass es Streit gibt. Die Zahl 12 hat deshalb nur die Teiler 1, 2, 3, 4, 6 und 12. Schauen wir uns die Divisionen noch einmal näher an: Wir sehen, dass alle sechs Teiler der Zahl 12 unter den Divisoren auftauchen. Genauso tauchen sie alle aber auch in den Ergebnissen auf. Um alle Teiler einer Zahl zu ermitteln, müssen wir also nicht jede der Divisionen durchführen. Wir beginnen mit dem Divisor 1. Dann gehen wir schrittweise zu größeren Divisoren über, bis dort eine Zahl auftaucht, die wir schon einmal im Ergebnis stehen hatten. Dann können wir uns sicher sein, dass wir alle Teiler der betreffenden Zahl ermittelt haben und wir brauchen nicht mehr weiterzurechnen. Die Teilermenge einer Zahl wird von allen ihren Teilern gebildet. Wie bei jeder anderen Menge werden die Teiler dabei in geschweifte Klammern geschrieben. Die Teilermenge wird mit einem großen T bezeichnet, an das man unten die Zahl schreibt, auf die sich die Teilermenge bezieht. Schauen wir uns noch ein Beispiel an: 60 ist ohne Rest durch 1, 2, 3, 4, 5 und 6 teilbar. Wir erhalten so die Ergebnisse 60, 30, 20, 15, 12 und 10. Dagegen ist 60 durch 7, 8 und 9 nicht ohne Rest teilbar. Und durch 10 ah, das brauchen wir nicht mehr, weil wir die 10 schon im Ergebnis stehen haben. Damit haben wir alle Teiler der 60 und können ihre Teilermenge angeben. Und wie sieht das bei den Vielfachen aus? Man erhält ein Vielfaches einer Zahl, wenn man sie mit einer beliebigen natürlichen Zahl größer Null multipliziert. Die Vielfachen von 12 sind also: 12, 24, 36, 48, und so weiter. Weil es unendlich viele natürliche Zahlen gibt, hat jede Zahl auch unendlich viele Vielfache. Die Gesamtheit aller Vielfachen einer Zahl bildet ihre Vielfachenmenge. Die Vielfachenmenge wird mit einem großen V bezeichnet, an das man unten die Zahl schreibt, auf die sich die Vielfachenmenge bezieht. Weil jede Zahl unendlich viele Vielfache hat, kann die Vielfachenmenge nicht vollständig angegeben werden. Und während die Ferkelchen Geburtstag feiern, fassen wir zusammen: Teilt man eine Zahl durch einen ihrer Teiler, bleibt kein Rest übrig. Die Teilermenge einer Zahl ist die Gesamtheit aller ihrer Teiler. Man erhält ein Vielfaches einer Zahl, wenn man sie mit einer beliebigen natürlichen Zahl größer Null multipliziert. Die Vielfachenmenge einer Zahl ist die Gesamtheit aller ihrer Vielfachen. Die Ferkelchen sind alle beschäftigt. Na, da kann Sybille endlich mal allein entspannen und GAMEPIGGY spielen.

50 Kommentare
  1. Ich würde sofatutor zu jeden Mensch e fehlen 🤙🏽

    Von Mariyam tai, vor 16 Tagen
  2. mir hilft es

    Von Isabelle, vor etwa einem Monat
  3. okay aber es hilft eigentlich ganz gut

    Von Isabelle, vor etwa einem Monat
  4. Ich finde sofatutor ist hilfreich aber ich werde in den Themen auch nicht besser

    Von Romy, vor 6 Monaten
  5. Aber trotzdem schwer und Mare bleibt immer mein hassfach

    Von Thora, vor 6 Monaten
Mehr Kommentare

Teilermenge und Vielfachenmenge Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Teilermenge und Vielfachenmenge kannst du es wiederholen und üben.
  • Gib die Vielfachen der Zahl $12$ an.

    Tipps

    Die Vielfachen einer Zahl bestimmst du, indem du die Zahl mit verschiedenen natürlichen Zahlen multiplizierst.

    Die Vielfachen von 7 sind zum Beispiel:

    $V_{7}=\{7;14;21;28;35;42; \dots \}$

    Da gilt:

    $7 \cdot 1=7$

    $7 \cdot 2=14$

    $7 \cdot 3=21$

    Lösung

    Die Vielfachen einer Zahl bestimmst du, indem du die Zahl mit verschiedenen natürlichen Zahlen multiplizierst. Für die Zahl $12$ erhalten wir:

    $12 \cdot 1=12$

    $12 \cdot 2=24$

    $12 \cdot 3=36$

    $12 \cdot 4=48$

    $12 \cdot 5=60$

    $12 \cdot 6=72$

    Dies können wir mit allen natürlichen Zahlen machen, es gibt also unendlich viele Vielfache.

    Also sind folgende Zahlen keine Vielfache von $12$:

    • $\{20; 26; 44; 66\}$
    Folgende Zahlen sind Vielfache der Zahl $12$:

    • $V_{12}=\{12;24;36;48;60;72; \dots \}$
  • Bestimme die Teilermenge von $12$.

    Tipps

    Die Teilermenge einer Zahl ist die Menge an Zahlen, durch die die ursprüngliche Zahl ohne Rest teilbar ist.

    Um diese Menge zu bestimmen, teilst du diese Zahl durch alle möglichen natürlichen Zahlen, die kleiner als diese Zahl sind.

    Lösung

    Die Teilermenge einer Zahl ist die Menge an Zahlen, durch die die ursprüngliche Zahl ohne Rest teilbar ist. Um diese Menge zu bestimmen, teilst du diese Zahl durch alle möglichen natürlichen Zahlen, die kleiner als diese Zahl sind. Dann erhältst du:

    • Um die Teilermenge von $12$ zu bestimmen, teilst du $12$ durch verschiedene Zahlen:
    $12:1=12$

    $12:2=6$

    $12:4=3$

    $12:5=2~\text{Rest}~2$

    $12:6=2$

    $12:7=1~\text{Rest}~5$

    $12:8=1~\text{Rest}~4$

    $12:9=1~\text{Rest}~3$

    $12:10=1~\text{Rest}~2$

    $12:11=1~\text{Rest}~1$

    $12:12=1$“

    Jetzt schreibst du alle Zahlen, die ohne Rest teilbar sind in eine Menge. Dann erhältst du:

    • Die Teilermenge von $12$ beträgt also:
    $T_{12}=\{1;2;3;4;6;12\}$.

  • Ermittle, welche Zahlen diese Teilermengen haben.

    Tipps

    Du kannst die Teilermengen der Zahlen bestimmen, indem du die Zahlen nacheinander durch alle natürlichen Zahlen teilst, die kleiner als die Zahl selbst sind. Dann überprüfst du, ob die Zahlen ohne Rest teilbar sind.

    Lässt sich die Zahl durch eine Zahl teilen, die bereits das Ergebnis einer Rechnung ohne Rest war, dann hast du alle Teiler bestimmt. Die Teiler sind die Divisoren und Ergebnisse aller bisherigen Rechnungen, wo kein Rest übrig blieb.

    Die Teilermenge der $6$ ist $T_6=\{1;2; 3; 6\}$.

    Lösung

    Du kannst die Teilermengen der Zahlen bestimmen, indem du die Zahlen nacheinander durch alle natürlichen Zahlen teilst, die kleiner als die Zahl selbst sind. Dann überprüfst du, ob die Zahlen ohne Rest teilbar sind. Die Teilermenge besteht aus den Zahlen, durch die die Zahl ohne Rest teilbar ist. Für $20$ erhalten wir Folgendes:

    $20:1=20$

    $20:2=10$

    $20:3=6~\text{Rest}~2$

    $20:4=5$

    $20:5=4$

    Damit haben wir alle Teiler gefunden, denn die Zahl $5$ war bereits das Ergebnis der Rechnung zuvor. Jetzt können wir sicher sein, dass alle Teiler bestimmt wurden. Das sind die Divisoren und Ergebnisse der bisherigen Rechnungen, bei denen kein Rest übrig geblieben ist. Also erhalten wir:

    • $T_{20}=\{1;2; 4; 5; 10;20\}$
    Genauso erhalten wir für die anderen Teilermengen:

    • $T_{24}=\{1;2; 3; 4; 6; 8;12;24\}$
    Es gilt:

    $24:1=24$

    $24:2=12$

    $24:3=8$

    $24:4=6$

    $24:5=4~\text{Rest}~4$

    $24:6=4$

    Hier können wir aufhören. Denn lässt sich die Zahl durch eine Zahl teilen, die bereits das Ergebnis einer Rechnung (hier die $6$) ohne Rest war, dann hast du alle Teiler bestimmt. Die Teiler sind die Divisoren und Ergebnisse aller bisherigen Rechnungen, wo kein Rest übrig blieb.

    • $T_{30}=\{1; 2; 3; 5; 6; 10;15;30\}$
    • $T_{36}=\{1;2; 3; 5;9;12;18;36\}$
  • Entscheide, zu welcher Zahl diese Vielfachen gehören.

    Tipps

    Die Vielfachen einer Zahl bestimmst du, indem du die Zahl nacheinander mit verschiedenen natürlichen Zahlen multiplizierst.

    Für $6$ erhalten wir zum Beispiel:

    $6 \cdot 1 = 6$

    $6 \cdot 2 = 12$

    $6 \cdot 3 = 18$

    Wenn du die Vielfachen durch eine der Zahlen in der Mitte teilst und kein Rest übrig bleibt, dann sind diese Zahlen Vielfache voneinander.

    Lösung

    Die Vielfachen einer Zahl bestimmst du, indem du die Zahl nacheinander mit verschiedenen natürlichen Zahlen multiplizierst. Für $3$ erhalten wir zum Beispiel:

    $3 \cdot 1 = 3$

    $3 \cdot 2 = 6$

    $3 \cdot 3 = 9$

    $3 \cdot 4 = 12$

    $3 \cdot 5 = 15$

    $3 \cdot 6 = 18$

    $3 \cdot 7 = 21$

    $3 \cdot 8 = 24$

    $3 \cdot 9 = 27$

    Dies könnten wir unendlich lange durchführen. Mit diesen Überlegungen erhalten wir folgende Vielfache:

    • $V_{3}=\{6;9;18;21;27, \dots\}$
    • $V_{4}=\{8;16;28;44, \dots \}$
    • $V_{5}=\{10;25;35;55;105, \dots\}$
  • Bestimme die korrekten Aussagen zu Teiler- und Vielfachenmengen.

    Tipps

    Es gibt unendlich viele natürliche Zahlen.

    Die Teilermenge ist die Menge aller Zahlen, die die Definition eines Teilers erfüllen.

    Lösung

    Diese Aussagen sind falsch:

    • Die Vielfachen einer Zahl kannst du bestimmen, indem du sie mit verschiedenen Kommazahlen multiplizierst.
    Hier kannst du die Vielfachen einer Zahl bestimmen, indem du diese Zahl mit verschiedenen natürlichen Zahlen multiplizierst.
    • Jede Zahl hat nur eine endliche Anzahl an Vielfachen.
    Da es unendlich viele natürliche Zahlen gibt, gibt es auch eine unendliche Anzahl an Vielfachen.

    Diese Aussagen sind richtig:

    • Wird eine Zahl durch einen ihrer Teiler geteilt, bleibt kein Rest übrig.
    Dies ist die Definition eines Teilers.
    • Die Teilermenge einer Zahl beschreibt alle Zahlen, durch die diese Zahl ohne Rest teilbar ist.
    • Mengen werden mit geschweiften Klammern umschlossen.
    • Diese sehen so aus: $\{ \}$
  • Ermittle die kleinsten gemeinsamen Vielfachen.

    Tipps

    Um das kleinste gemeinsame Vielfache zu bestimmen, musst du zunächst einige Vielfache der beiden Zahlen ermitteln. Das machst du so lange, bis ein Vielfaches bei beiden Zahlen auftaucht.

    Die Zahlen $4$ und $7$ haben folgende Vielfachenmengen:

    $V_{4}=\{4, 8,12,16,20, 24, 28, \dots\}$

    $V_{7}=\{7, 14,21,28,35, 42, \dots\}$

    Das kleinste gemeinsame Vielfache ist in diesem Fall $28$.

    Lösung

    Um das kleinste gemeinsame Vielfache zu bestimmen, ermitteln wir zunächst einige Vielfache der beiden Zahlen, zum Beispiel:

    $3 \cdot 1 = 3$

    $3 \cdot 2 = 6$

    $3 \cdot 3 = 9$

    $3 \cdot 4 = 12$

    $3 \cdot 5 = 15$

    Und:

    $5 \cdot 1 = 5$

    $5 \cdot 2 = 10$

    $5 \cdot 3 = 15$

    • Damit können wir das kleinste gemeinsame Vielfache der Zahlen $3$ und $5$ angeben: Es ist $15$.
    Genauso erhalten wir für die anderen Zahlen:

    • Das kleinste gemeinsame Vielfache der Zahlen $2$ und $3$ ist $6$.
    • Für $3$ und $7$ erhalten wir $21$.
    • Für $4$ und $6$ ergibt sich $12$.
    Für $12$ und $4$ erhalten wir folgende Vielfachenmengen:

    $V_{12}=\{12, 24, 36, 48, \dots\}$

    $V_{4}=\{4, 8,12,16,20, 24, \dots\}$

    Die Zahlen haben also mehrere gemeinsame Vielfache $\{12,24, \dots \}$.

    • Das kleinste gemeinsame Vielfache der beiden Zahlen beträgt $12$.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'883

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'388

Lernvideos

36'070

Übungen

32'618

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden