3 Profile für Kinder Bis zu 3 Geschwisterprofile in einem Account anlegen
NEU - Badge
Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Normalenform einer Ebene

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.8 / 4 Bewertungen
Die Autor*innen
Avatar
Team Digital
Normalenform einer Ebene
lernst du in der Sekundarstufe 5. Klasse - 6. Klasse - 7. Klasse

Grundlagen zum Thema Normalenform einer Ebene

Nach dem Schauen dieses Videos wirst du in der Lage sein, die Normalenform einer Ebenengleichung zu bestimmen, wenn du sie in Parameterform gegeben hast.

Zunächst lernst du, was ein Normalenvektor ist. Anschließend erfährst du, wie eine Ebenengleichung in Normalenform aufgebaut ist. Abschließend erfährst du, wie du eine Ebenengleichung in Parameterform in Normalenform umwandeln kannst.

Ebenengleichung in Normalenform

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Ebenengleichung, Parameterform, Normalenform, Koordinatenform, Stützvektor, Richtungsvektor, Normalenvektor, Skalarprodukt und Vektorprodukt.

Bevor du dieses Video schaust, solltest du bereits die Parameterform einer Ebene kennen. Außerdem solltest du grundlegendes Wissen zur Vektorrechnung haben.

Nach diesem Video wirst du darauf vorbereitet sein, die Koordinatenform einer Ebene kennen zu lernen.

Normalenform einer Ebene Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Normalenform einer Ebene kannst du es wiederholen und üben.
  • Gib an, welche Aussagen zur Normalenform einer Ebene korrekt sind.

    Tipps

    Die allgemeine Ebenengleichung in Normalenform lautet:

    $E$: $(\vec{x} -\vec{p}) \cdot \vec{n} = 0$

    Es sind zwei Aussagen richtig.

    Lösung

    Die Normalenform einer Ebene enthält als wesentliches Element den Normalenvektor. Der Normalenvektor $\vec{n}$ steht senkrecht auf der Ebene. Zusammen mit dem Stützvektor $\vec{p}$, der auf einen beliebigen Punkt einer Ebene zeigt, legt er eine Normalenebene eindeutig fest.

    Die allgemeine Ebenengleichung in Normalenform lautet:

    $E$: $(\vec{x} -\vec{p}) \cdot \vec{n} = 0$


    Wir betrachten die gegebenen Aussagen:


    Aussage 1

    • Die Normalenform einer Ebene enthält den Stützvektor und zwei Normalenvektoren.
    Diese Aussage ist inkorrekt: Da der Normalenvektor senkrecht zur Ebene ist, legt er zusammen mit dem Stützvektor die Ebene eindeutig fest. Denn wenn wir die Richtung des Normalenvektors ändern, er aber weiterhin senkrecht auf der Ebene stehen soll, ändern wir damit auch die entsprechende Ebene.


    Aussage 2

    • Der Normalenvektor verläuft orthogonal zu jedem Vektor, der in der Ebene liegt.
    Diese Aussage ist korrekt: Der Normalenvektor verläuft orthogonal zur Ebene und somit auch zu jedem Vektor, der in der Ebene liegt.


    Aussage 3

    • Das Skalarprodukt von einem beliebigen Vektor in der Ebene und dem Normalenvektor ist immer null.
    Diese Aussage ist korrekt, denn zwei Vektoren sind genau dann orthogonal zueinander sind, wenn ihr Skalarprodukt gleich null ist.


    Aussage 4

    • Das Skalarprodukt zwischen Stützvektor und dem Normalenvektor ist immer null.
    Diese Aussage ist inkorrekt, da der Stützvektor und der Normalenvektor nicht immer senkrecht zueinander stehen.
  • Vervollständige die Umwandlung der gegebenen Ebene von der Parameterform in die Normalenform.

    Tipps

    Du kannst den Normalenvektor aus dem Vektorprodukt der beiden Richtungsvektoren berechnen.

    Den Stützvektor kannst du aus der Parameterform übernehmen.

    Das ist die Normalenform einer Ebene:

    $E$: $(\vec{x} -\vec{p}) \cdot \vec{n} = 0$

    Der Vektor $\vec{p}$ ist hier der Stützvektor und der Vektor $\vec{n}$ ist der Normalenvektor, der senkrecht auf der Ebene steht.

    Lösung

    Die allgemeine Ebenengleichung in Parameterform lautet:

    $E$: $\vec{x}=\vec{p} + r \cdot \vec{u} + s \cdot \vec{v} \qquad(r, s \in \mathbb{R})$

    Dabei stellt $\vec{p}$ den Stützvektor, $\vec{u}$ und $\vec{v}$ stellen die Richtungsvektoren dar.


    Die allgemeine Ebenengleichung in Normalenform lautet:

    $E$: $(\vec{x} -\vec{p}) \cdot \vec{n} = 0$

    Dabei stellt $\vec{p}$ den Stützvektor und $\vec{n}$ den Normalenvektor dar.


    Wir betrachten jetzt die Umwandlung von der Parameterform in die Normalenform am Beispiel:

    $E$: $\vec{x} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 8 \\ 2 \\ 1 \end{pmatrix} \qquad(r, s \in \mathbb{R})$

    Um die Normalenform aufzustellen, müssen wir den Normalenvektor bestimmen. Dieser muss orthogonal zu den beiden Richtungsvektoren sein. Wir können ihn mithilfe des Vektorproduktes der beiden Richtungsvektoren bestimmen, denn es gilt:

    Wenn zwei Vektoren $\vec{a}$ und $\vec{b}$ nicht kollinear sind, ist das Vektorprodukt $\vec{a} \times \vec{b}$ orthogonal zu den Vektoren $\vec{a}$ und $\vec{b}$.


    Wir berechnen also den Normalenvektor, indem wir das Vektorprodukt der beiden Richtungsvektoren bestimmen:

    $\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{pmatrix} = \begin{pmatrix} -1-4 \\ 16-1 \\ 2-(-8) \end{pmatrix} = \begin{pmatrix} -5 \\ 15 \\ 10 \end{pmatrix}$

    Wir können nun die Normalenform der Ebene aufstellen, indem wir den Stützvektor der Parameterform übernehmen und den eben berechneten Normalenvektor verwenden:

    $E$: $\left( \vec{x} - \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \right) \cdot \begin{pmatrix} -5 \\ 15 \\ 10 \end{pmatrix}$


    Hinweis: Es ist auch möglich, den Vektor, welcher sich aus dem Vektorprodukt der beiden Richtungsvektoren ergibt, zu skalieren und dann als Normalenvektor zu nutzen. Dazu teilen wir alle Koordinaten des Vektors durch eine natürliche Zahl:

    $\begin{pmatrix} -5 \\ 15 \\ 10 \end{pmatrix} = 5 \cdot \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$

    Wir verwenden hier jedoch direkt das Vektorprodukt, so wie es im Video gezeigt wurde.

  • Entscheide, welche Vektoren als Normalenvektor für die Ebene möglich sind.

    Tipps

    Es können auch mehrere Vektoren als Normalenvektoren für eine Ebene möglich sein.

    Da die $x$-$y$-Ebene horizontal verläuft, muss der Normalenvektor senkrecht nach oben, parallel zu $z$-Achse verlaufen.

    Lösung

    In einem dreidimensionalen Koordinatensystem stehen die drei Achsen senkrecht zueinander. Wir sprechen daher auch von einem kartesischen Koordinatensystem.
    Die Ebenen, die von den Achsen aufgespannt werden, nennen wir Koordinatenebenen: Die $x$-$y$-Ebene verläuft horizontal. Die $y$-$z$-Ebene und die $x$-$z$-Ebene verlaufen hingegen vertikal. Auch diese Ebenen stehen – wie die Koordinatenachsen – senkrecht aufeinander.

    Um geeignete Normalenvektoren zu den Ebenen zu finden, vergegenwärtigen wir uns noch einmal:
    Der Normalenvektor $\vec{n}$ steht senkrecht auf der Ebene.

    Hinweis: Zu einer Ebene gibt es beliebig viele verschiedene Normalenvektoren, welche alle parallel zueinander sind.


    Die $\boldsymbol{x}$-$\boldsymbol{y}$-Ebene

    Da diese Ebene horizontal verläuft, muss der Normalenvektor senkrecht nach oben, parallel zu $z$-Achse verlaufen. Ein Normalenvektor der $x$-$y$-Ebene hat daher allgemein diese Form:

    $\begin{pmatrix} 0 \\ 0 \\ a \end{pmatrix} \quad$ mit $a \in \mathbb{R}$

    Folgender Vektor ist daher ein Normalenvektor der $x$-$y$-Ebene:

    $\vec{v_2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $


    Die $\boldsymbol{y}$-$\boldsymbol{z}$-Ebene

    Diese Ebene verläuft vertikal. Der Normalenvektor muss horizontal, parallel zu $x$-Achse verlaufen. Ein Normalenvektor der $y$-$z$-Ebene hat daher allgemein diese Form:

    $\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \quad$ mit $a \in \mathbb{R}$

    Folgende Vektoren sind daher Normalenvektoren der $y$-$z$-Ebene:

    $\vec{u_2} =\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ und $\vec{u_4} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$


    Die $\boldsymbol{x}$-$\boldsymbol{z}$-Ebene

    Diese Ebene verläuft vertikal. Der Normalenvektor muss horizontal, parallel zu $y$-Achse verlaufen. Ein Normalenvektor der $x$-$z$-Ebene hat daher allgemein diese Form:

    $\begin{pmatrix} 0 \\ a \\ 0 \end{pmatrix} \quad$ mit $a \in \mathbb{R}$

    Folgende Vektoren sind daher Normalenvektoren der $y$-$z$-Ebene:

    $\vec{w_2} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$ und $\vec{w_5} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$

  • Ermittle aus den zwei gegebenen Richtungsvektoren einer Ebene den Normalenvektor.

    Tipps

    Wir berechnen also den Normalenvektor, indem wir das Vektorprodukt der beiden Richtungsvektoren bestimmen.

    Vektorprodukt:

    $\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{pmatrix}$

    Achte auf die Vorzeichen.

    Lösung

    Um aus zwei Richtungsvektoren $\vec{u}$ und $\vec{v}$ einer Ebene den Normalenvektor zu bestimmen, verwenden wir das Vektorprodukt, denn es gilt: Wenn zwei Vektoren $\vec{a}$ und $\vec{b}$ nicht kollinear sind, ist das Vektorprodukt $\vec{a} \times \vec{b}$ orthogonal zu den Vektoren $\vec{a}$ und $\vec{b}$.

    Wir berechnen also den Normalenvektor, indem wir das Vektorprodukt der beiden Richtungsvektoren bestimmen:

    Vektorprodukt: $\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{pmatrix}$



    Beispiel 1

    $\vec{u} = \begin{pmatrix} -5 \\ 1 \\ 0 \end{pmatrix} \quad \vec{v} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$

    Normalenvektor $\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} 1 \cdot 1 - 0 \cdot (-3) \\0 \cdot 2 - (-5) \cdot 1 \\ -5 \cdot (-3) - 1 \cdot 2 \end{pmatrix} = \begin{pmatrix} 1 - 0 \\ 0 - (-5) \\ 15 - 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 13 \end{pmatrix}$


    Beispiel 2

    $\vec{u} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \quad \vec{v} = \begin{pmatrix} 5 \\ 4 \\ -3 \end{pmatrix}$

    Normalenvektor $\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} -1 \cdot (-3) - 2 \cdot 4 \\2 \cdot 5 - 0 \cdot (-3) \\ 0 \cdot 4 - (-1) \cdot 5 \end{pmatrix} = \begin{pmatrix} 3-8 \\ 10-0 \\ 0 - (-5) \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \\ 5 \end{pmatrix}$


    Beispiel 3

    $\vec{u} = \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix} \quad \vec{v} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$

    Normalenvektor $\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} 1 \cdot (-2) - 2 \cdot 4 \\2 \cdot 2 - (-4) \cdot (-2) \\ -4 \cdot 4 - 1 \cdot 2 \end{pmatrix} = \begin{pmatrix} -2-8 \\ 4 -8 \\ -16 - 2 \end{pmatrix} = \begin{pmatrix} -10 \\ -4 \\ -18 \end{pmatrix}$


    Beispiel 4

    $\vec{u} = \begin{pmatrix} 10 \\ -3 \\ 5 \end{pmatrix} \quad \vec{v} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix}$

    Normalenvektor $\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} -3 \cdot 0 - 5 \cdot 0 \\5 \cdot 5 - 10 \cdot 0 \\ 10 \cdot 0 - (-3) \cdot 5 \end{pmatrix} = \begin{pmatrix} 0-0 \\ 25-0 \\ 0 - (-15) \end{pmatrix} = \begin{pmatrix} 0 \\ 25 \\ 15 \end{pmatrix}$

  • Gib an, wodurch eine Ebene eindeutig festgelegt ist.

    Tipps

    Ein Stützvektor $\vec{p}$ verläuft immer vom Ursprung zu einem beliebigen Punkt auf der Ebene (dem Stützpunkt).

    Der Normalenvektor $\vec{n}$ steht senkrecht auf der Ebene.

    Die allgemeine Ebenengleichung in Normalenform lautet:

    $E$: $(\vec{x} -\vec{p}) \cdot \vec{n} = 0$

    Die allgemeine Ebenengleichung in Parameterform lautet:

    $E$: $\vec{x}=\vec{p} + r \cdot \vec{u} + s \cdot \vec{v} \qquad(r, s \in \mathbb{R})$

    Lösung

    Eine Ebene können wir angeben in:

    • Parameterform
    • Normalenform
    • Koordinatenform

    Die Parameterform

    Die allgemeine Ebenengleichung in Parameterform lautet:

    $E$: $\vec{x}=\vec{p} + r \cdot \vec{u} + s \cdot \vec{v} \qquad(r, s \in \mathbb{R})$

    Der Stützvektor $\vec{p}$ verläuft immer vom Ursprung zu einem beliebigen Punkt auf der Ebene (dem Stützpunkt).

    Die beiden Richtungsvektoren $\vec{u}$ und $\vec{v}$ spannen die Ebene auf. Sie können mit den Parametern $r$ und $s$ so multipliziert werden, dass jeder Punkt auf der Ebene erreicht wird.


    Die Normalenform

    Die allgemeine Ebenengleichung in Normalenform lautet:

    $E$: $(\vec{x} -\vec{p}) \cdot \vec{n} = 0$

    Der Stützvektor $\vec{p}$ verläuft auch hier vom Ursprung zu einem beliebigen Punkt auf der Ebene (dem Stützpunkt).

    Der Normalenvektor $\vec{n}$ steht senkrecht auf der Ebene.


    Die Koordinatenform

    Die Koordinatenform ist eine etwas andere Darstellung der Ebene und kommt ohne Vektoren aus. Sie sieht allgemein wie folgt aus:

    $E$: $ax+by+cz=d \qquad(a, b, c, d \in \mathbb{R})$


    $\Rightarrow$ Eine Ebene ist also eindeutig festgelegt durch:

    • einen Stützvektor und einen Normalenvektor oder
    • einen Stützvektor und zwei Richtungsvektoren.

  • Vergleiche die beiden Ebenen.

    Tipps

    Beide Ebenen haben den gleichen Stützvektor. Dieser verläuft immer vom Ursprung zu einem beliebigen Punkt auf der Ebene (dem Stützpunkt).

    Der Richtungsvektor der ersten Ebene ist gleich dem Normalenvektor der zweiten Ebene, nämlich $\begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix}$.

    Lösung

    Wir haben zwei Ebenen gegeben:

    Ebene $\boldsymbol{E_1}$ in Parameterform:

    $E_1$: $\vec{x} = \begin{pmatrix} 9 \\ 4 \\ -1 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix} \qquad(r, s \in \mathbb{R})$

    Ebene $\boldsymbol{E_2}$ in Normalenform:

    $E_2$: $\left( \vec{x} - \begin{pmatrix} 9 \\ 4 \\ -1 \end{pmatrix} \right) \cdot \begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix} = 0$


    Bei der Betrachtung der beiden Ebene fällt auf:

    Beide Ebenen haben den gleichen Stützvektor, nämlich $\begin{pmatrix} 9 \\ 4 \\ -1 \end{pmatrix}$.

    Der Stützvektor verläuft immer vom Ursprung zu einem beliebigen Punkt auf der Ebene (dem Stützpunkt). Wir können also schlussfolgern, dass beide Ebenen den Punkt $\boldsymbol{P(9|4|-1)}$ enthalten.

    Der Richtungsvektor der ersten Ebene ist gleich dem Normalenvektor der zweiten Ebene, nämlich $\begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix}$.

    Da der Normalenvektor $\vec{n}$ senkrecht auf der zweiten Ebene steht, wohingegen der Richtungsvektor in der Ebene $E_1$ liegt, können wir schlussfolgern, dass die beiden Ebenen senkrecht zueinander stehen.

    Die $\boldsymbol{y}$-Koordinate von Ebene $\boldsymbol{E_2}$ ist $\boldsymbol{0}$:

    Daraus können wir schlussfolgern, dass die Ebene $E_2$ parallel zur $y$-Achse verläuft.

30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'993

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'254

Lernvideos

35'841

Übungen

32'600

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden