Gebrochen rationale Gleichungen lösen
Erfahren Sie Schritt für Schritt, wie man Bruchgleichungen löst. Durch Überkreuzmultiplikation können gleichnamige Nenner erzeugt werden, um am Ende Brüche addieren zu können. Anhand von Beispielen wird gezeigt, wie die Lösung gefunden werden kann. Interessiert? Das und vieles mehr finden Sie im folgenden Text.

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Gebrochen rationale Gleichungen lösen
Wie löse ich gebrochen rationale Gleichungen?
Gleichungen können Brüche enthalten. Wenn dabei die Variable nicht nur im Zähler, sondern auch im Nenner vorkommt, sprechen wir von gebrochen rationalen Gleichungen oder Bruchgleichungen. Wie man gebrochen rationale Gleichungen lösen kann, wird in diesem Text einfach erklärt.
Gebrochen rationale Gleichungen lösen – Schritt für Schritt
Schauen wir uns am Beispiel der folgenden Gleichung an, wie man gebrochen rationale Gleichungen lösen kann.
Um solch eine Bruchgleichung zu lösen, müssen wir überkreuz multiplizieren. Dafür multiplizieren wir den Nenner des ersten Bruchs, also , mit dem Zähler des zweiten Bruchs, also , und umgekehrt und setzen die Produkte gleich.
Die erhaltene Gleichung müssen wir nun nach auflösen. Dafür subtrahieren wir zunächst auf beiden Seiten und teilen im Anschluss durch . So erhalten wir für :
Die Lösung der Bruchgleichung ist .
Gebrochen rationale Gleichungen lösen – Beispiel
Betrachten wir ein weiteres Beispiel. In diesem Fall stehen auf der rechten Seite zwei Brüche.
Damit wir überkreuz multiplizieren können, darf auf jeder Seite des Gleichheitszeichens nur ein Bruch stehen. Dafür müssen wir durch geschicktes Erweitern der beiden Brüche ein gemeinsames Vielfaches herstellen. Indem wir den ersten Bruch mit dem Nenner des zweiten Bruchs und umgekehrt erweitern, erhalten wir ein gemeinsames Vielfaches. Auf diese Weise haben wir auf der rechten Seite die Nenner der beiden Brüche gleichnamig gemacht. Erst dann können wir die beiden Brüche addieren.
Die Klammern können mithilfe des Distributivgesetzes aufgelöst werden.
Die Nenner beider Brüche sind identisch, somit können die Zähler addiert werden.
Da nun auf beiden Seiten nur noch ein Bruch steht, können wir überkreuz multiplizieren, zusammenfassen und im Anschluss durch teilen, da alle Terme durch teilbar sind:
Um die erhaltene quadratische Gleichung zu lösen, stellen wir sie in die allgemeine Form um und vereinfachen:
Durch eine Faktorisierung durch Zerlegung und Ausklammern können wir die rechte Seite der Gleichung anschließend lösen und erhalten:
Um die Gleichung nach aufzulösen, nutzen wir den Satz vom Nullprodukt. Dafür setzen wir beide Faktoren gleich und lösen nach auf. Wir erhalten zwei -Werte als mögliche Lösungen der Bruchgleichung:
Gebrochen rationale Gleichungen lösen – Zusammenfassung
Die folgenden Stichpunkte fassen noch einmal kurz zusammen, wie man gebrochen rationale Gleichungen lösen kann:
- Gebrochen rationale Gleichungen sind Gleichungen, bei denen die Variable auch im Nenner vorkommt.
- Zum Lösen gebrochen rationaler Gleichungen darf auf beiden Seiten des Gleichheitszeichens nur je ein Bruch stehen. Ist das bei der Ausgangsgleichung nicht der Fall, müssen zunächst beide Seiten entsprechend umgeformt werden.
- Im Anschluss wird überkreuz multipliziert, das bedeutet, wir multiplizieren jeweils den Zähler der einen mit dem Nenner der anderen Seite.
- Die entstandene Gleichung enthält keine Brüche mehr und kann mit einem geeigneten Verfahren nach der gesuchten Variable aufgelöst werden.
Hier auf der Seite findest du noch weitere Aufgaben und Übungen zum Thema Gebrochen rationale Gleichungen lösen.
Transkript Gebrochen rationale Gleichungen lösen
Auf einer Reise durch die Karibik musste Großvater Lindbergh mit seiner Reisegruppe auf einer einsamen Insel notlanden. Die tatkräftigen Reisenden wissen, dass sie ein paar Dinge zum Überleben brauchen werden: einen Unterschlupf, Feuer und Nahrung. Und sie müssen wissen, wie man Bruchgleichungen aufstellt und löst, um die Aufgaben effizient zu verteilen. Zum Glück sind sie morgens abgestürzt. Es bleibt ihnen also etwas Zeit. Aber die Uhr tickt und sie wissen nicht, ob sie alle Aufgaben bis Sonnenuntergang erledigen können. Mike macht sich auf Nahrungssuche, General Gutmann sammelt Zweige für einen Unterstand, Jasmin und Großvater sammeln Holz. Nach einer Weile kommt Jasmin mit 10 Holzscheiten zurück, Großvater kehrt 10 Minuten später mit 15 Holzscheiten zurück. Sie wissen aber nicht genau, wie lange sie unterwegs waren. Die Zeit, die Jasmin gebraucht hat, um 10 Holzscheite zu sammeln, nennen wir x. Da Großvater 10 Minuten nach Jasmin zurückgekehrt ist, können wir sagen, er hat x + 10 Minuten gebraucht, um 15 Holzscheite zu sammeln. Da sie das Holz mit der gleichen Rate gesammelt haben, also pro Holzscheit die gleiche Zeit brauchten, können sie eine Bruchgleichung aufstellen, um auszurechnen, wie lange sie unterwegs waren. Um die Aufgabe zu lösen, können wir über Kreuz multiplizieren. Wir müssen einfach den Zähler des ersten Bruchs mit dem Nenner des zweiten Bruchs multiplizieren. Und umgekehrt. Also genau so. Dann multiplizieren wir noch die Klammer aus. So erhalten wir 10x + 100. Jetzt ziehen wir von beiden Seiten der Gleichung 10x ab und teilen dann beide Seiten durch 5, um die Lösung zu erhalten. Jasmin hat also 10 Holzscheite in 20 Minuten gesammelt, also im Durchschnitt ein Scheit alle 2 Minuten. Großvater Lindbergh hat mit der gleichen Rate gesammelt. Er hat 15 Holzscheite in 30 Minuten zusammenbekommen, also auch ein Scheit alle 2 Minuten. Um sicherzugehen, dass das Holz für die Nacht reicht, macht sich Jasmin auf zu einer zweiten Sammeltour. In der Zwischenzeit kommt General Gutmann vom Zweige-sammeln zurück, aus denen sie mit Großvater einen Unterschlupf flechtet, damit die Gruppe etwas Schutz vor der Macht der Elemente hat. Um den Unterschlupf vor Sonnenuntergang fertig zu bekommen, müssen die beiden 80 Zweige in 3 Stunden, also in 180 Minuten, zusammenflechten. Obwohl sie die Zweige mit derselben, unbekannten Rate von 1 durch x zusammenflechten, braucht Großvater nach jedem Zweig eine kleine Pause, wodurch sich seine Rate zu 1 durch x + 6 verändert. Wie lange haben sie für jeden Zweig Zeit? Um die Bruchgleichung zu lösen, müssen wir ein gemeinsames Vielfaches der Nenner finden, denn wir müssen die Brüche auf der rechten Seite addieren. Um das gemeinsame Vielfache zu finden, erweitern wir den ersten Bruch um den Nenner des zweiten Bruchs, also um x + 6. Und umgekehrt. Jetzt nutzen wir das Distributivgesetz, wodurch wir x + 6 durch x Quadrat + 6x plus x durch x Quadrat + 6x erhalten. Da die Nenner beider Brüche nun identisch sind, können wir die Zähler einfach addieren. Jetzt können wir über Kreuz multiplizieren, genauso wie im ersten Beispiel. Jetzt benutzt du wieder das Distributivgesetz. Alle Terme lassen sich nun durch 40 teilen, also machen wir das. Jetzt stellen wir die Gleichung in die allgemeine Form um und vereinfachen sie, indem wir gleichartige Terme zusammenfassen. Als Letztes faktorisieren wir die rechte Seite der Gleichung und bekommen (2x + 9) mal (x - 3). Um nach x aufzulösen nutzen wir den Satz vom Nullprodukt und setzten beide Faktoren gleich 0. Dann können wir nach x auflösen. Eine negative Zeit?! Denk dran, wenn du Textaufgaben löst, musst du deine Lösung nicht nur überprüfen, indem du die Werte einsetzt du musst auch überlegen, ob eine Lösung Sinn ergibt oder nicht. General Gutmann muss also mindestens 1 Zweig je 3 Minuten flechten, während Großvater Lindbergh 1 Zweig je 9 Minuten flechten muss, damit sie den Unterschlupf rechtzeitig fertig bekommen. Gemeinsam müssen sie in 9 Minuten 4 Zweige zusammenflechten. Alle sind erleichtert, dass sie ihre Aufgaben vor Sonnenuntergang erledigen konnten. Aber ihnen knurren ganz schön die Mägen. Apropos! Wo ist Mike!? Und noch wichtiger: Wo ist das Essen? Moment mal, wo hat Mike denn das Fastfood her? Vielleicht hätten sie sich die Insel erst mal etwas genauer anschauen sollen.
Gebrochen rationale Gleichungen lösen Übung
9'172
sofaheld-Level
6'600
vorgefertigte
Vokabeln
7'605
Lernvideos
35'609
Übungen
32'354
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal
Das Thema wurde gut erklärt 👍,aber die Aufgabe mit den Zweigen habe ich noch nicht so richtig verstanden.
Team digital macht die besten Lernvideos in Mathe<33 :)
Solche "digitale" Erklärvideos sind viel besser als die, bei denen ein Lehrer erklärt.
viel zu abgehackt und unverständlich
alles ok?
boar, mann diese trottel
umsonst gerechnet ne;
weisste dassisch nischgern reschne? he? Yo