Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Wahrscheinlichkeit – Beispiel Würfeln

Tauche ein in die Welt des Lymphsystems: Entdecke seine Bestandteile, wie die lymphatischen Organe und das Lymphgefäßsystem. Finde heraus, wie es Krankheitserreger bekämpft und den Körper schützt. Bereit für eine spannende Reise durch den Körper? Erfahre mehr über das Lymphsystem und seine Funktionen!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Wahrscheinlichkeit – Beispiel Würfeln

Was versteht man unter einem Zufallsversuch beim Würfelwurf?

1/5
Bereit für eine echte Prüfung?

Das Wahrscheinlichkeit Würfeln Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 97 Bewertungen
Die Autor*innen
Avatar
Team Digital
Wahrscheinlichkeit – Beispiel Würfeln
lernst du in der Primarschule 5. Klasse - 6. Klasse

Grundlagen zum Thema Wahrscheinlichkeit – Beispiel Würfeln

Wahrscheinlichkeit am Beispiel Würfel – Mathe

Im folgenden Text wird die Wahrscheinlichkeit am Beispiel eines Würfels einfach erklärt. Zunächst lernst du, dass es sich beim Würfelwurf um einen Zufallsversuch, genauer gesagt um ein Laplace-Experiment, handelt, und anschließend siehst du einige Beispiele zur Berechnung von Wahrscheinlichkeiten beim Würfelwurf.


Zufallsversuch – Definition

Beim Würfelwurf handelt es sich um einen Zufallsversuch. Und was versteht man unter einem Zufallsversuch?

  • Alle möglichen Ausgänge sind uns bekannt. Hier wird eine 11, 22, 33, 44, 55 oder 66 gewürfelt.
  • Der Versuch (Würfelwurf) kann beliebig oft wiederholt werden.
  • Es herrschen immer die gleichen Bedingungen.
  • Der Ausgang eines Zufallsversuchs ist nicht vorhersehbar. Man kann also vorher nie sicher sagen, was gewürfelt wird.


Teste dein Wissen zum Thema Wahrscheinlichkeit Würfeln!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Laplace-Experiment – Definition

Da alle Seiten eines Würfels gleich groß sind, sind alle möglichen Augenzahlen gleich wahrscheinlich. Daher sprechen wir bei einem Würfelwurf von einem Laplace-Experiment.

  • Bei einem Laplace-Experiment ist die Wahrscheinlichkeit für jedes Einzelereignis gleich groß. Daher können wir die Wahrscheinlichkeit PP eines bestimmten Ereignisses EE einfach berechnen. Dafür wird die Anzahl aller günstigen Ergebnisse durch die Anzahl aller möglichen Ergebnisse geteilt.

P(E)= Anzahl aller gu¨nstigen Ergebnisse  Anzahl aller mo¨glichen Ergebnisse P(E) = \frac{\text{ Anzahl aller günstigen Ergebnisse }}{\text{ Anzahl aller möglichen Ergebnisse }}


Wahrscheinlichkeiten berechnen – Beispiele

Die Anzahl aller möglichen Ergebnisse ist bei einem sechsseitigen Würfel immer gleich 66. In den folgenden Beispielen schauen wir uns an, was passiert, wenn wir die Bedingungen beim Würfelwurf etwas eingrenzen.

Beispiel: Wahrscheinlichkeit, eine bestimmte Zahl zu würfeln

Möchten wir die Wahrscheinlichkeit für die Augenzahl 33 berechnen, gibt es nur ein günstiges Ergebnis – die 33. Die Wahrscheinlichkeit dafür, eine 33 zu würfeln, berechnen wir mit:

P(3)=16=16,67%P(3) = \frac{1}{6} = 16,67 \,\%

Diese Wahrscheinlichkeit von 16\frac{1}{6} entspricht also 16,67%16,67 \,\%. Die Wahrscheinlichkeit für das Ereignis eine 3 würfeln ist somit nicht sehr hoch.

Beispiel: Wahrscheinlichkeit, eine gerade Zahl zu würfeln

Wie hoch ist die Wahrscheinlichkeit, eine gerade Augenzahl zu würfeln? Schauen wir uns die Wahrscheinlichkeit für dieses Ereignis mal etwas genauer an.

Für das Ereignis eine gerade Zahl würfeln gibt es 33 günstige Ergebnisse – die 22, die 44 und die 66.

P(gerade Augenzahl)=P(2;4;6)P(\text{gerade Augenzahl}) = P(2; 4; 6)

Die Anzahl aller möglichen Ergebnisse beträgt bei diesem Versuch wieder 66. Somit ergibt sich die Wahrscheinlichkeit:

P(gerade Augenzahl)=36=12=50%P(\text{gerade Augenzahl}) = \frac{3}{6} = \frac{1}{2} = 50\,\%

Die Wahrscheinlichkeit für dieses Ereignis liegt also bei 50%50\,\%.

Beispiel: Wahrscheinlichkeit, eine Zahl größer als 4 zu würfeln

Nun schauen wir uns noch an, wie hoch die Wahrscheinlichkeit ist, dass die Augenzahl beim Wurf höher als 44 sein wird.

Die Wahrscheinlichkeit für dieses Ereignis ist gleich der Wahrscheinlichkeit, dass eine 55 oder eine 66 gewürfelt wird.

P(Augenzahl ho¨her als 4)=P(5;6)P(\text{Augenzahl höher als 4}) = P(5; 6)

Es gibt also 22 günstige Ergebnisse bei 66 möglichen Ergebnissen.

P(Augenzahl ho¨her als 4)=26=13=33,33%P(\text{Augenzahl höher als 4}) = \frac{2}{6} = \frac{1}{3} = 33,33\,\%

Die Wahrscheinlichkeit, eine Zahl größer als 44 zu würfeln, liegt also bei 33,33%33,33\,\%.

Wahrscheinlichkeit Würfel – Zusammenfassung

In den folgenden Stichpunkten ist noch einmal das Wichtigste zum Thema Wahrscheinlichkeit am Beispiel eines Würfels zusammengefasst.

  • Beim Würfelwurf handelt es sich um einen Zufallsversuch, genauer gesagt um ein Laplace-Experiment.
  • Die Wahrscheinlichkeit für jedes Einzelereignis ist gleich groß. Beim Würfelwurf sind es die 66 verschiedenen Augenzahlen des Würfels.
  • Die entsprechende Wahrscheinlichkeit entspricht jeweils 16\frac{1}{6}.
  • Um die Wahrscheinlichkeit für ein Ereignis zu berechnen, wird die Anzahl der dafür günstigen Ergebnisse durch die Anzahl aller möglichen Ergebnisse geteilt.

Hier auf dieser Seite findest du noch Übungen mit weiteren Beispielen und Arbeitsblätter zum Thema Wahrscheinlichkeiten am Beispiel des Würfels.

Transkript Wahrscheinlichkeit – Beispiel Würfeln

Lisa ist das Ganze nicht geheuer. Egal was sie würfelt, der Zauberer „Magic Dice“ kann den Ausgang vorhersagen. Woher wusste er jetzt schon wieder, dass Lisa eine Sechs würfeln würde? Rät er einfach? Das ist doch total unwahrscheinlich. Am besten schauen wir uns die „Wahrscheinlichkeiten beim Würfelwurf“ nochmal genau an. Beim Würfelwurf handelt es sich um einen Zufallsversuch, da kann Lisa keiner was vormachen. Das heißt, alle möglichen Ausgänge - eins, zwei, drei, vier, fünf und sechs - sind uns bekannt. Der Würfelwurf kann beliebig oft wiederholt werden und das unter den gleichen Bedingungen. Außerdem ist der Ausgang eines Zufallsversuchs nicht vorhersehbar. Also wie zum Henker macht er das? Lisa wird ihm noch auf die Schliche kommen! Für den nächsten Wurf sagt „Magic Dice“ eine drei voraus. Die Wahrscheinlichkeit für dieses Ereignis liegt bei einem Sechstel, das weiß sie. Da alle Seiten eines Würfels gleich groß sind, sind auch alle möglichen Augenzahlen gleich wahrscheinlich. Wir sprechen beim Würfelwurf daher von einem Laplace-Experiment. Bei einem Laplace-Experiment können wir die Wahrscheinlichkeit eines bestimmten Ereignisses einfach berechnen: Wir teilen dafür die Anzahl der günstigen Ergebnisse durch die Anzahl aller möglichen Ergebnisse. Die Anzahl aller möglichen Ergebnisse ist bei einem sechsseitigen Würfel immer gleich sechs. Möchten wir die Wahrscheinlichkeit für die Augenzahl drei berechnen, gibt es nur ein günstiges Ergebnis, eben die drei. Ein Sechstel entsprechen gerundet sechzehn Komma sechs sieben Prozent. Die Wahrscheinlichkeit für das Ereignis „Eine drei werfen“ ist somit nicht sehr hoch. Und er hat trotzdem Recht behalten! Pures Glück, Lisa wird ein weiteres Mal würfeln. Dieses mal behauptet „Magic Dice“, dass eine gerade Augenzahl fallen wird. Bevor sie würfelt, schaut sich Lisa das Ganze nochmal in Ruhe an: Für das Ereignis „gerade Zahl werfen“ gibt es drei günstige Ergebnisse, nämlich zwei, vier und sechs. Die Anzahl aller möglichen Ergebnisse beträgt natürlich wieder sechs. Die Wahrscheinlichkeit für das Ereignis „gerade Zahl werfen“ ist also gleich drei Sechstel. Durch Kürzen erhalten wir ein halb und das entspricht fünfzig Prozent. Alles klar, eine klassische „fifty-fifty“-Situation. Sie würfelt eine zwei. Okay, seine Glückssträhne hält an. Ein letzter Wurf. Die Ansage von „Magic Dice“ lautet diesmal: Die Augenzahl wird höher als vier sein. Die Wahrscheinlichkeit für dieses Ereignis ist gleich der Wahrscheinlichkeit, dass eine fünf oder sechs fällt. Wir haben zwei günstige bei sechs möglichen Ergebnissen. Zwei Sechstel ist gekürzt ein Drittel und das entspricht gerundet dreiunddreißig Komma drei drei Prozent. Sie würfelt und jetzt wird es Lisa zu bunt. Während sie sich überlegt, wie sie „Magic Dice“ endlich knacken kann, fassen wir nochmal kurz zusammen: Beim Würfelwurf handelt es sich um einen Zufallsversuch, genauer gesagt um ein Laplace-Experiment. Bei einem Laplace-Experiment ist die Wahrscheinlichkeit für jedes Einzelereignis gleich groß. Beim Würfel sind das die sechs verschiedenen Augenzahlen. Die entsprechende Wahrscheinlichkeit beträgt jeweils ein Sechstel. Um die Wahrscheinlichkeit für ein Ereignis zu berechnen, teilen wir die Anzahl der dafür günstigen Ergebnisse durch die Anzahl aller möglichen Ergebnisse. Beim einfachen Würfelwurf eines sechsseitigen Würfels ist die Anzahl aller möglichen Ergebnisse immer gleich sechs. So, diesmal hat Lisa den Würfel einfach heimlich weggenommen, Was „Magic Dice“ wohl jetzt voraussagen wird? Lisa gibt auf. Man kann wohl nicht alles mit Mathematik erklären.

6 Kommentare
  1. Magic Diceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

    Von Alpha, vor 6 Monaten
  2. bisschen
    crispy :b

    Von Joel, vor etwa einem Jahr
  3. cool

    Von Beat Egger , vor mehr als einem Jahr
  4. neis

    Von Beat Egger , vor mehr als einem Jahr
  5. Coool

    Von Trrrrrrrrr, vor mehr als einem Jahr
Mehr Kommentare

Wahrscheinlichkeit – Beispiel Würfeln Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wahrscheinlichkeit – Beispiel Würfeln kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'226

sofaheld-Level

6'600

vorgefertigte
Vokabeln

7'669

Lernvideos

37'129

Übungen

32'378

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden