Parameter e bei der Sinusfunktion
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Parameter e bei der Sinusfunktion
Hallo. Im Video geht es um den Einfluss des Parameters e auf die Sinusfunktion f ( x ) = sin( x ) + e. Wie verändert sich der Graph der Sinusfunktion, wenn du unterschiedliche Werte für den Parameter e einsetzt? Zu Beginn des Videos setzen wir verschiedene Werte für den Parameter e ein und zeichnen mithilfe einer Wertetabelle jeweils den Graphen der Funktionen. Im Anschluss vergleichen wir die entstehenden Graphen untereinander und formulieren zwei Merksätze. Viel Spaß.
Parameter e bei der Sinusfunktion Übung
-
Bestimme welchen Einfluss der Parameter $e$ hat.
TippsWas passiert wenn du dem Sinuswert im Nachhinein noch etwas hinzufügst?
Welchen Einfluss hat das auf die Amplitude, Lage und Periodendauer?
Schaue dir noch einmal das Bild der normalen Sinusfunktion an. Was wird beim Graphen anders, wenn du dann noch etwas hinzu addierst.
Erstelle gegebenfalls eine Wertetabelle, um im Anschluss den Funktionsgraphen zu veranschaulichen.
LösungWir betrachten die Gleichung $f(x)=\sin(x)+e$.
Wenn wir $e=\mathbf{0}$ setzen, erhalten wir die normale Sinusfunktion, mit der Wertetabelle
$ \begin {array} {l|c|c|c|c|c} x & 0 & \frac 1 2 \pi & \pi & \frac 3 2\pi & 2 \pi \\ \hline y & 0& 1 & 0 & -1 & 0\\ \end {array} $
- Wenn wir $e=0$ setzen, vereinfacht sich die Formel $f(x)=\sin(x)+e=\sin(x)+0=\sin(x)$. Es ist die normale Sinusfunktion.
Wenn wir nun aber $e=\mathbf{2}$ setzen, erhalten wir die Wertetabelle
$ \begin {array} {l|c|c|c|c|c} x & 0 & \frac 1 2 \pi & \pi & \frac 3 2 \pi & 2 \pi \\ \hline y & 2 & 3 & 2 & 1 & 2\\ \end {array} $
Der Funktionsgraph wurde nicht in $x$-Richtung getreckt oder gestaucht, die Periodendauer ist also gleich geblieben.
Auch wurde der Funktionsgraph nicht in $y$-Richtung gestreckt oder gestaucht, die Amplitude ist also auch gleich geblieben.
- Der Abstand zwischen dem Maximum und Minimum sowie der Abstand zwischen Maximal- und Minimalstelle ist gleich geblieben. Der Graph wurde also in keine Richtung gestaucht oder gestreckt.
- Das Maximum und das Minimum sind weiter oben. Der gesamte Graph ist um $2$ nach oben verschoben worden.
-
Benenne die richtigen Aussagen über den Parameter $e$.
TippsStelle dir die normale Sinusfunktion noch einmal vor.
Was verändert sich, wenn du zu dem Sinuswert noch etwas hinzuaddierst?
Setzte in die Formel $f(x)=\sin(x)+e$ verschiedene Werte von $e$ ein. Bilde nun eine Wertetabelle und siehe, was sich im Vergleich zur normalen Sinusfunktion verändert hat.
LösungDer Parameter $e$ verändert den Funktionsgraphen, indem er ihn auf der y-Achse verschiebt:
- Ist der Parameter positiv, wird der Graph nach oben verschoben.
- Ist der Parameter negativ, wird der Graph nach unten verschoben.
Die Aussagen 1, 2 und 3 sind also falsch.
Die Aussagen 4 und 5 sind richtig.
-
Bestimme die richtigen Funktionsgleichungen anhand der Wertetabellen.
TippsDie Wertetabelle einer normalen Sinusfunktion sieht folgendermaßen aus
$ \begin {array} {l|c|c|c|c|c} x & 0 & \frac 1 2 \pi & \pi & \frac 3 2\pi & 2 \pi \\ \hline y & 0& 1 & 0 & -1 & 0\\ \end {array} $
Wo sind die Unterschiede zu den sonst gegebenen Tabellen?
Die Funktionen werden durch den Parameter $e$ nur verschoben.
Ist $e$ positiv werden sie nach oben verschoben, ist $e$ negativ werden sie nach unten verschoben.
Du kannst den Abstand der Maxima zwischen der angegebenen Sinusfunktion und der normalen Sinusfunktion bestimmen und bekommst so unsere Verschiebung $e$.
LösungDas Maximum der normalen Sinusfunktion ist 1. Wir untersuchen den Abstand der Maxima der angegebenen Sinusfunktion und der normalen Sinusfunktion und bekommen so unsere Verschiebung $e$.
Für die erste Wertetabelle ist der Abstand zwischen dem gegebenen Maximum und dem Maximum der normalen Sinusfunktion $4-1=3$.
Die Funktion ist also um $e=3$ verschoben worden. Die Funktionsgleichung lautet damit
$f(x)=\sin(x)+3$
Für die zweite Wertetabelle finden wir den Parameter $e$ wieder über den Abstand der Maxima. Er ist $\frac 1 2 -1=-\frac 1 2$. Die Gleichung lautet deshalb
$f(x)=\sin(x)-\frac 1 2$
Die Formeln für die anderen Wertetabellen finden wir genauso.
Für die dritte Wertetabelle erhalten wir
$f(x)=\sin(x)+\frac 1 4$
Für die vierte Wertetabelle erhalten wir
$f(x)=\sin(x)-\frac 1 3$
-
Erschließe dir die richtigen Funktionsgleichungen anhand der vorgegebenen Graphen.
TippsIst $e$ positiv, wird der Funktionsgraph nach oben verschoben.
Ist $e$ negativ, wird der Funktionsgraph nach unten verschoben.
Den Parameter $e$ findest du, indem du den Abstand zwischen dem gegebenen Maximum und dem Maximum der normalen Sinusfunktion bestimmst.
LösungDas Maximum der normalen Sinusfunktion liegt bei $y=1$. Wir überprüfen den Abstand zwischen dem vorliegenden Maximum und dem Maximum der normalen Sinusfunktion.
- Erstes Diagramm: Wir sehen, dass das Maximum hier $-1$ ist. Normalerweise ist es 1. Wir berechnen die Verschiebung und damit den Parameter $e$, indem wir die Differenz ausrechnen. Wir rechnen also $e=-1-1=-2$. Jetzt können wir die Gleichung aufstellen
- Zweites Diagramm: Wir bestimmen den Parameter wieder, indem wir den Abstand berechnen: $e=\frac 3 2 -1=\frac 1 2$. Die Gleichung lautet also
- Drittes Diagramm: Wir gehen wieder nach dem gleichen Prinzip vor und finden so die Gleichung
- Viertes Diagramm: Die Gleichung lautet
-
Bestimme die Veränderung des Graphen in Abhängigkeit von $e$ im Vergleich zur normalen Sinuskurve.
TippsBilde gegebenenfalls eine Wertetabelle und rechne die Werte aus.
So kannst du sehen, ob die Graphen nach oben oder unten verschoben werden.
Ob die Graphen nach oben oder unten verschoben werden, liegt nur an den Vorzeichen des Parameters $e$.
Ist e positiv, so wird der Graph nach oben verschoben.
LösungDas Vorzeichen des Parameters $e$ in der Funktionsgleichung $f(x)=\sin (x)+e$ gibt an, in welche Richtung der Graph verschoben wird. Ist $e$ positiv, wird er nach oben verschoben; und er wird nach unten verschoben, wenn $e$ negativ ist.
So sorgen $e=1$, $e=2$ und $e=\frac 1 2$ dafür, dass der Graph nach oben verschoben wird.
Und $e=-\frac 3 4$, $e=-1$ und $e=-3$ bewirken, dass der Graph nach unten verschoben wird.
-
Ermittle die richtigen Parameter für die angegebenen Sinusfunktionen.
TippsIn der Formel $f(x)=a\cdot \sin(x-d)+e$ steht $a$ für die Änderung der Amplitude und $d$ für die Verschiebung auf der $x$-Achse.
Überprüfe jedes Diagramm, ob überhaupt eine Änderung der Amplitude und eine Verschiebung auf der $x$-Achse vorliegt.
Ist die Amplitude unverändert, so ist $a=1$
Liegt keine Verschiebung auf der $x$-Achse vor, ist $d=0$.
Ob eine Veränderung der Amplitude vorliegt, kannst du sehen, indem du überprüfst, ob die Maxima und Minima größer geworden sind.
Die normale Sinuskurve schwingt zwischen $y=1$ und $y=-1$. In diesem Fall ist $a=1$. Wenn die Funktion zwischen $y=2$ und $y=-2$ schwingt, dann liegt $a=2$ vor.
Die Amplituden sind also größer also vorher.
Nun lautet die Formel also $f(x)=2\cdot \sin(x)$
Der Parameter $d$ ist für die Verschiebung auf der x-Achse verantwortlich.
Die normale Sinusfunktion schneidet die x-Achse im Koordinatenursprung und hat die folgenden Nullstelle bei $x=0$ und bei $x=2\pi$.
Wir können die Funktion zum Beispiel auf der x-Achse nach rechts verschieben um $d=\frac 1 2 \pi$.
Nun ist die Stelle, die vorher im Koordinatenursprung lag, bei $x=\frac 1 2 \pi$.
Und die beiden folgenden Nullstellen sind bei $x=1 \frac 1 2 \pi$ und bei $x=2\frac 1 2 \pi$.
Nun lautet die Formel also $f(x)=\sin(x-\frac 1 2 \pi)$
Es können auch mehrere Parameter zusammenkommen.
So können wir die normale Sinusfunktion mit $d=\frac 1 2\pi$ nach rechts verschieben und mit $a=2$ die Amplituden vergrößern.
Die fertige Formel sieht dann so aus $f(x)=2\cdot \sin(x-\frac 1 2 \pi)$
LösungWir überprüfen jeden Parameter einzeln. Ist die Amplitude verändert, ändert sich $a$. Ist der Graph auf der $x$-Achse verschoben, ändert sich $d$. Ist der Graph auf der $y$-Achse verschoben, ändert sich $e$.
- Erstes Diagramm: Die Amplituden sind doppelt so groß wie bei normalen Sinusfunktionen; also muss $a=2$ sein. Die Funktion ist außerdem nach oben verschoben und zwar um 2; also muss $e=2$ sein. Der Graph ist aber nicht nach rechts oder links verschoben worden. Wir sehen das, da die Maxima und Minima noch die gleichen $x$-Werte haben wie die Maxima und Minima bei einer normalen Sinusfunktion. Mit diesen Parametern können wir die Funktionsgleichung aufstellen
- Zweites Diagramm: Die Amplituden sind hier nicht verändert. Der Graph ist aber nicht nur in $y$-Richtung, sondern auch in $x$-Richtung verschoben. Das Maxima 1 liegt bei normalen Sinusfunktionen bei $x=\frac1 2 \pi$. Hier liegt es jedoch bei $x=0$ und ist 0. Der Funktionsgraph ist also um $\frac1 2 \pi$ nach links verschoben worden und um $1$ nach unten. Damit lautet die Gleichung
- Drittes Diagramm: Wir bestimmen wieder die Parameter und bekommen so die Gleichung
- Viertes Diagramm: Wir bestimmen wieder die Parameter und bekommen so die Gleichung
8'905
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'232
Lernvideos
35'802
Übungen
32'564
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Bruchgleichungen lösen – Übungen
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
Klasse! Dem Parameter e gebe ich nun einfach den Nickname "Erich Hochtief", um mir seine Funktion - nämlich die Verschiebung des Graphen der Sinusfunktion entlang der y-Achse - im Langzeitgedächtnis zu verankern.