3 Profile für Kinder Bis zu 3 Geschwisterprofile in einem Account anlegen
NEU - Badge
Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Normalverteilung – Gaußsche Glockenkurve und Laplace-Bedingung

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Gaußsche Glockenkurve Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.4 / 7 Bewertungen
Die Autor*innen
Avatar
Mandy F.
Normalverteilung – Gaußsche Glockenkurve und Laplace-Bedingung
lernst du in der Sekundarstufe 5. Klasse - 6. Klasse - 7. Klasse

Grundlagen zum Thema Normalverteilung – Gaußsche Glockenkurve und Laplace-Bedingung

Hallo, Wie eine Normalverteilung aus einer Binomialverteilung entsteht, weißt du schon. Du hast ebenfalls gelernt, wie eine Glockenkurve aussieht. In diesem Video nehmen wir die sogenannte Gauß´sche Glockenkurve etwas näher unter die Lupe. Dabei erfährst du mehr über ihre Eigenschaften und den Namensgeber. So lernst du, durch welche Funktionsgleichung sich die Glockenkurve darstellen lässt. In diesem Zusammenhang wird dir auch der Begriff "Standardnormalverteilung" erklärt. Des Weiteren erfährst du, welche Bedeutung die Laplace-Bedingung hat und wie man sie berechnet. Dies kannst du anhand von drei Beispielen üben. Zum Schluss gibt es eine Zusammenfassung mit den wichtigsten Informationen. Viel Spaß!

Transkript Normalverteilung – Gaußsche Glockenkurve und Laplace-Bedingung

Hallo! Hier ist Mandy. Ziel dieses Videos wird es sein, die Normalverteilung und deren Eigenschaften unter die Lupe zu nehmen. Als Einstieg erhältst Du eine kleine Wiederholung, bevor es um die Gauß’sche Glockenkurve und die Laplace-Bedingung geht. Anhand eines Beispiels wird Dir dann noch die Bedeutung der Laplace-Bedingung aufgezeigt. Zum Schluss gibt es eine Zusammenfassung, in der Du alles Wichtige auf einen Blick erhältst. Für dieses Video ist es hilfreich zu wissen, wie die Normalverteilung entsteht. Daher wiederholen wir dies kurz. Ausgangspunkt ist dabei eine Binomialverteilung. Je nach Anzahl der Durchführungen n und Erfolgswahrscheinlichkeit p sind diese unterschiedlich gestaltet. Anhand dieser Beispiele kann man die Veränderung der Histogramme bei unterschiedlichen Durchführungen gut erkennen. Um sie besser vergleichen und mit ihnen rechnen zu können, kann man diese Binomialverteilungen standardisieren. Diese erfolgt in drei Schritten. Zuerst wird der Erwartungswert auf null verschoben. Dann erfolgt die Normierung auf die Standardabweichung eins. Zum Schluss muss ein Ausgleich der Säulenbreitenänderung, die durch den zweiten Schritt entsteht, vorgenommen werden. Dadurch beträgt die Breite der Säulen wieder eins. Dieser Prozess lässt sich kurz zusammenfassen durch die Formel Z * σ(x) = (x - μ)/σ(x) * σ(x). Z beschreibt dabei hier die umgewandelte Zufallsgröße x, σ(x) die Standardabweichung und μ den Erwartungswert der Zufallsgröße x. Auf diese Weise erhält man sehr ähnliche Glockenkurven. Auch wenn es sich um eine unterschiedliche Anzahl von Durchführungen handelt. Diese Glockenkurven haben ganz besondere Eigenschaften. Der Mathematiker Karl Friedrich Gauß hat vor langer Zeit diese Merkmale entdeckt. Darum nennt man sie auch Gauß’sche Glockenkurve. Diese Entdeckung war so genial, dass er sogar auf dem 10 D-Mark Schein abgebildet wurde. Dort kann man auch die Gauß’sche Glockenkurve erkennen. Mithilfe einer solchen Kurve ist es möglich, beliebige Wahrscheinlichkeiten zu unterschiedlichen Binomialverteilungen näherungsweise zu berechnen. Da ab einer gewissen Anzahl der Durchführungen die Wahrscheinlichkeiten mit der Bernoulli-Formel nur schwer zu berechnen sind. Zur näheren Untersuchung der Gauß’schen Glockenkurve blenden wir die Säulen aus. Nun können wir allein den Graphen sehen. Jede Gauß’sche Glockenkurve kann durch eine besondere Funktionsgleichung beschrieben werden. Im Allgemeinen lautet sie f(x) = 1/(σ * Wurzel 2 π) * e(-0,5 * ((x - μ)/σ)²). Betrachtet man aber unsere Zufallsgröße Z mit μ = 0 und σ = 1, so ergibt sich dann die folgende Formel: φ(Z) = 1/(Wurzel 2π) * e(-0,5 * z²). In diesem Fall spricht man dann von der Standardnormalverteilung. Man kann die Histogramme von binomialverteilten Zufallsgrößen besonders genau annähern, wenn die folgende Bedingung erfüllt ist: σ = Wurzel (n * p * (1 - p)) > 3. Dies ist die sogenannte Laplace-Bedingung. Kommt Euch die Formel irgendwie bekannt vor? Richtig! Damit wird die Standardabweichung von Binomialverteilungen berechnet. Und laut Laplace-Bedingung muss sie nun größer als drei sein, um eine besonders genaue Annäherung zu erreichen. Damit wir uns die Bedeutung dieser Formeln besser vorstellen können, wenden wir sie nun auf ein Beispiel an. Johanna und Tim werfen eine Münze. Sie wollen bei einem 50-maligen Münzwurf gegeneinander wetten. Um genaue Vorhersagen machen zu können, muss die Laplace-Bedingung erfüllt sein. Schauen wir uns mal an, ob bei diesem Beispiel die Laplace-Bedingung erfüllt ist. Um diese zu berechnen, notieren wir uns die gegebenen und die gesuchten Größen. Gegeben ist die Anzahl der Münzwürfe. Es sind fünfzig Würfe. Also ist n = 50. Da das Erscheinen jeder Seite gleich wahrscheinlich ist, beträgt die Erfolgswahrscheinlichkeit p = 0,5. Unter gesucht schreiben wir die Frage, ob die Laplace-Bedingung erfüllt ist. Zur Lösung benötigen wir die Formel: σ = Wurzel(n * p * (1 - p)) > 3. Wir setzen die gegebenen Größen ein und erhalten: σ = Wurzel(50 * 0,5 * 0,5). Gerundet ergibt das 3,54. Dieser Wert erfüllt knapp die Bedingung. Was passiert nun, wenn wir die Werte verändern? Erhöhen wir zum Beispiel die Anzahl der Würfe auf n = 100, dann erhalten wir für die Standardabweichung den Wert 5. Das dazugehörige Histogramm sieht dem Histogramm mit n = 50 sehr ähnlich, hat aber mehr Säulen und die Glockenkurve tritt stärker hervor. Und was passiert bei n = 10? Dann erhalten wir für σ gerundet 1,58. Diese Größe erfüllt die Laplace-Bedingung nicht. Daher können entsprechende Wahrscheinlichkeiten nur ungenau angenähert werden. Das entsprechende Histogramm hat in diesem Fall nur wenige Säulen und die Glockenkurve ist nicht mehr exakt genug. Bei n = 10 können wir aber natürlich die Bernoulli-Formel anwenden oder entsprechende Tabellen benutzen. Wir stellen also für die Laplace-Bedingung Folgendes fest: je größer die Anzahl der Durchführungen n ist, umso größer ist die Standardabweichung und umso deutlicher tritt die Glockenkurve hervor. Dies hat zur Folge, dass die Genauigkeit der angenäherten Wahrscheinlichkeiten betrachteter Ereignisse im Vergleich zu exakten Lösungen über die Bernoulli-Formel größer wird. Jetzt noch einmal das Wichtigste auf einen Blick in einer Zusammenfassung: Die Kurve zu einer standardisierten Binomialverteilung, auch Normalverteilung genannt, heißt Gauß’sche Glockenkurve. Der Graph lässt sich im Allgemeinen durch die Gleichung f(x) = 1/(σ * Wurzel 2π) * e(-0,5 * ((x – μ)/σ)²) darstellen, beziehungsweise bei dem Spezialfall μ = 0 und σ = 1 durch die Formel φ(Z) = 1/(Wurzel 2π) * e(-0,5 * z²). Um eine möglichst hohe Genauigkeit der angegebenen Wahrscheinlichkeiten zu erhalten, muss die Laplace-Bedingung erfüllt sein. Hierbei muss die Standardabweichung der Binomialverteilung größer als drei sein. Das war’s schon wieder von mir. Daher sage ich nun: Bye bye und bis zum nächsten Mal!

1 Kommentar
  1. super tolles Video, sehr verständlich. Danke Mandy

    Von Nico Momen, vor etwa 9 Jahren

Normalverteilung – Gaußsche Glockenkurve und Laplace-Bedingung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Normalverteilung – Gaußsche Glockenkurve und Laplace-Bedingung kannst du es wiederholen und üben.
  • Gib an, ob die Laplace-Bedingung erfüllt ist.

    Tipps

    Die Anzahl der Durchführungen eines Wahrscheinlichkeitsexperiments wird mit $n$ angegeben.

    Schauen wir uns ein Beispiel an. Wir haben $n=90$ und $p=0,3$ gegeben. Wir berechnen $\sigma = \sqrt{90\cdot 0,3\cdot 0,7} \approx 4,35$.

    Diese Zahl ist größer als $3$. Deshalb ist die Laplace-Bedingungen erfüllt.

    Lösung

    Die Standardabweichung berechnet sich bei der Binomialverteilung durch folgende Formel:

    $\sigma = \sqrt{n\cdot p \cdot (1-p)}$

    Wir sagen, dass die Laplace-Bedingung erfüllt ist, wenn $\sigma$ größer als $3$ ist.

    Der Wert $p=0,5$ gilt für alle drei Zufallsexperimente. Im ersten ist $n=20$. Es ergibt sich also $\sigma = \sqrt{20\cdot 0,5\cdot 0,5} = \sqrt{5} \approx 2,24$. Dieser Wert ist kleiner als $3$. Die Laplace-Bedingung ist also für dieses Wahrscheinlichkeitsexperiment nicht erfüllt.

    Die anderen Standardabweichungen berechnest du analog. Die Ergebnisse sind in der Tabelle nochmal vollständig dargestellt:

    $\begin{array}{c|c} n&\sigma\\ \hline 20&2,24\\ 50&3,54\\ 120&5,48 \end{array}$

    Für $n=50$ und $n=120$ ist $\sigma$ größer als $3$, die Laplace-Bedingung ist also erfüllt.

  • Vervollständige die Aussagen zur Gaußschen Glockenkurve.

    Tipps

    Binomialverteilungen können näherungsweise mit Hilfe der Gaußschen Glockenkurve berechnet werden, wenn die Laplace-Bedingung erfüllt ist.

    Die Laplace-Bedingung stellt sicher, dass die Standardabweichung $\sigma$ nicht zu gering ist.

    Lösung

    Da die Bernoulli-Formel für große $n$ sehr aufwendig anzuwenden ist, will man einen anderen Weg finden, um die Wahrscheinlichkeiten von Binomialverteilungen zu berechnen.

    Ist die Laplace-Bedingung erfüllt, kann dies mithilfe der Normalverteilung erfolgen. Diese ist genau dann erfüllt, wenn die Standardabweichung $\sigma$ größer als $3$ ist.

    Die Standardnormalverteilung ist eine besondere Gaußsche Glockenkurve mit den Parametern $\mu=0$ und $\sigma=1$.

  • Berechne die Standardabweichung.

    Tipps

    Bestimme die Anzahl der Durchführungen $n$ und die Wahrscheinlichkeit für einen erfolgreichen Ausgang eines Durchgangs $p$ und berechne mit Hilfe dieser Werte die Standardabweichung $\sigma$.

    Die Formel für die Standardabweichung $\sigma$ lautet bei der Binomialverteilung:

    $\sigma = \sqrt{n \cdot p \cdot (1-p)}$.

    Lösung

    Die Formel zur Berechnung der Standardabweichung lautet $\sigma = \sqrt{n\cdot p \cdot (1-p)}$.

    Der Münzwurf

    Beim Münzwurf beträgt die Anzahl der Durchführungen $n=9$ und die Wahrscheinlichkeit, dass bei einem Durchgang die Seite mit dem Kopf nach oben zeigt, beträgt $p=0,5$. Einsetzen in die Formel ergibt:

    $ \sigma=\sqrt{n\cdot p\cdot (1-p)}=\sqrt{9\cdot 0,5\cdot (1-0,5)}=1,5. $

    Die Mäuse

    Die Anzahl der behandelten Mäuse ist $n=10$. Die Wahrscheinlichkeit, dass die Behandlung erfolgreich ist, beträgt $80\%$ oder als Kommazahl geschrieben: $p=0,8$. Einsetzen ergibt:

    $ \sigma=\sqrt{n\cdot p\cdot (1-p)}=\sqrt{10\cdot 0,8\cdot (1-0,8)}\approx 1,26. $

    Die Karten

    Im Fall der Ziehungen der Karten ist $n=300$ und die Erfolgswahrscheinlichkeit, die rote Karte zu ziehen, $p=\frac{1}{14}$. Es ergibt sich $\sigma\approx 4,46$.

    Das Würfelspiel

    Beim Würfelspiel von Tom beträgt $n=100$ und die Wahrscheinlichkeit, dass ein gewöhnlicher Würfel eine $1$ oder $6$ zeigt, beträgt $p=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}$. Einsetzen in die Formel für die Standardnormalverteilung liefert $\sigma\approx 4,71$.

  • Untersuche die wichtigen Eigenschaften der Gaußschen Glockenkurve.

    Tipps

    Auf den Bildern der Funktionsgraphen erkennt man bestimmte Eigenschaften der Glockenkurven.

    Bei $\mu$ zum Beispiel hat die Funktion immer den höchsten Funktionswert.

    Den Wendepunkt einer Funktion erkennt man daran, dass der Funktionsgraph von einer Rechts- zu einer Linkskrümmung (oder umgekehrt!) wechselt.

    Lösung

    Hier siehst du den Text mit den richtig ausgefüllten Lücken (fett gedruckt).

    Eine Normalverteilung mit den Parametern $\sigma$ und $\mu$ hat folgende Eigenschaften:

    • Ihren Maximalwert erreicht sie an der Stelle $x=\mu$. Dieser ist der einzige Extrempunkt der Funktion. Dies lässt sich einsehen, wenn man die erste Ableitung der Funktion berechnet und diese gleich $0$ setzt. Wählt man den Parameter $\mu$ kleiner, verschiebt sich der komplette Graph nach links, macht man ihn größer nach rechts.
    • Die Funktion der Normalverteilung ist achsensymmetrisch bezüglich der vertikalen Achse durch $x=\mu$. Denn setzt man die Werte $\mu-y$ und $\mu+y$ für beliebige Zahlen y ein und sieht, dass die Funktionswerte dieselben sind.
    • Die erste Ableitung, also die Steigung der Tangente an einem Punkt, ist positiv für Werte $x<\mu$, ist gleich $0$ bei $x=\mu$ und wird negativ für Werte $x>\mu$. Dies ist durch Ablesen am Graph erkennbar oder durch explizites Ausrechnen der ersten Ableitung und Betrachtung des Vorzeichens.
    • Die Funktion hat genau zwei Wendestellen, die man über die Nullstellen der zweiten Ableitung berechnen kann. Eine explizite Rechnung ergibt, dass diese genau bei $x_1=\mu-\sigma$ und $x_2=\mu+\sigma$ liegen.
    • Je kleiner $\sigma$ ist, desto steiler ist die Kurve um den Erwartungswert $\mu$ herum. Diesen Zusammenhang erkennt man beispielsweise auch im obigen Bild. Der Graph von $\sigma = 0,5$ ist um den Erwartungswert $\mu$ herum steiler, als der Graph von $\sigma = 1$.
    Nochmal zusammengefasst: Die Krümmung des Funktionsgraphen wird also vollständig durch $\sigma$ bestimmt. Eine Änderung des Parameters $\mu$ bewirkt lediglich eine Verschiebung des Graphen nach links oder rechts.

  • Gib an, welche der Aussagen zur Normalverteilung richtig sind.

    Tipps

    Oftmals ergeben sich in den Anwendungen binomialverteilte Zufallsgrößen.

    Diese möchte man mit Hilfe der Normalverteilung approximieren.

    Die Histogramme sind abhängig von $n$ und $p$.

    Lösung

    Da die Bernoulli-Formel mit größerem $n$ immer aufwendiger zu berechnen ist, kann man - sofern die Laplace-Bedingung erfüllt ist - die Normalverteilung benutzen, um die binomialverteilte Größe anzunähern.

    Die Form des Histogramms einer binomialverteilten Größe hängt von der Anzahl der Durchführungen $n$, sowie der Erfolgswahrscheinlichkeit eines Durchgangs $p$ ab.

    Um die verschiedenen Histogramme vergleichen zu können, nimmt man eine Standardisierung vor. Bei der Standardisierung der Normalverteilung wird der Erwartungswert auf $0$ verschoben. Dann wird auf die Standardabweichung $1$ normiert und anschließend müssen die Säulenbreiten wieder auf die Breite $1$ skaliert werden. Daraus ergeben sich die Werte $\sigma$ und $\mu$, aus denen sich die Funktionsgleichung der Glockenkurve eindeutig ergibt:

    $ Z\cdot \sigma(X)=\frac{X-\mu}{\sigma(x)}\cdot\sigma(X). $

    Das Wort Standard bezieht sich lediglich darauf, dass die Standard-Werte $\mu=0$ und $\sigma=1$ benutzt werden. Es sagt nichts darüber aus, wann dieser Fall auftritt.

  • Entscheide, welcher Graph zu welchem Wertepaar $p$ und $n$ gehört.

    Tipps

    Die Werte von $\mu$ und $\sigma$ haben Auswirkungen auf den Graphen der Normalverteilung.

    Bei $x = \mu$ ist immer der Hochpunkt.

    $\sigma$ beeinflusst die Steigung des Funktionsgraphen um den Hochpunkt herum. Je größer $\sigma$ ist, desto flacher ist die Steigung.

    Lösung

    Die Formel zur Berechnung der Standardabweichung lautet $\sigma = \sqrt{n\cdot p \cdot(1-p)}$ und die Formel zur Berechnung des Erwartungswerts lautet $\mu = n\cdot p$.

    Die ersten beiden Graphen

    Die ersten beiden Graphen haben beide einen Hochpunkt bei $x = 20$. Dementsprechend muss der Erwartungswert $\mu = 20$ sein. Deshalb wissen wir nun, dass die beiden Wertepaare $p=\frac45, n=25$ und $p=\frac15, n=100$ zu diesen beiden Graphen gehören müssen.

    Um zu entscheiden, welches Wertepaar zu welchem Graphen gehört, berechnen wir die jeweilige Standardabweichung:

    $\sigma_1 = \sqrt{25\cdot\frac45\cdot\frac15} = 2$ und $\sigma_2 = \sqrt{100\cdot\frac15\cdot\frac45} = 4$.

    Das kleinere $\sigma$ gehört zu dem steileren Funktionsgraphen. Das größere $\sigma$ gehört zu dem weniger steilen Funktionsgraphen.

    Die zweiten beiden Graphen

    Mit Hilfe des Ausschlussverfahrens wissen wir schon, welche beiden Wertepaare zu diesen beiden Graphen gehören. Falls du mit diesen Graphen angefangen hast, siehst du hier aber auch noch einen anderen Weg.

    Man kann ablesen, dass bei beiden Graphen $\mu = 30$ gilt. Dieser Wert lässt sich aus den beiden Wertepaaren $p=\frac34, n=40$ und $p=\frac{5}{19}, n = 114$ berechnen.

    Nun müssen wir wieder die beiden Standardabweichungen berechnen:

    $\sigma_1 = \sqrt{40\cdot\frac34\frac14} \approx 2,739$ und $\sigma_2 = \sqrt{114\cdot\frac{5}{19}\cdot\frac{14}{19}}\approx 4,702$.

    Da $\sigma_1 < \sigma_2$ gehört das Wertepaar $p=\frac34, n=40$ zum 3. Graphen und das Wertepaar $p=\frac{5}{19}, n = 114$ zum 4. Graphen.

30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'993

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'253

Lernvideos

35'841

Übungen

32'600

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden