3 Profile für Kinder Bis zu 3 Geschwisterprofile in einem Account anlegen
NEU - Badge
Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Gleichungen und Ungleichungen

Entdecke die Welt der Relationszeichen! Lerne, wie Gleichheits- und Ungleichheitszeichen mathematische Ausdrücke vergleichen. Interessiert? Tauche ein und erfahre mehr!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Gleichungen und Ungleichungen

Was ist ein Relationszeichen?

1/5
Bereit für eine echte Prüfung?

Das Relationszeichen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.9 / 109 Bewertungen
Die Autor*innen
Avatar
Team Digital
Gleichungen und Ungleichungen
lernst du in der Primarschule 5. Klasse - 6. Klasse - Sekundarstufe 1. Klasse - 2. Klasse

Grundlagen zum Thema Gleichungen und Ungleichungen

Gleichungen und Ungleichungen – Mathe

Um verschiedene Zahlen miteinander zu vergleichen, können Gleichungen oder Ungleichungen helfen. Gleichungen und Ungleichungen bestehen aus mathematischen Ausdrücken, die durch ein besonderes Zeichen verbunden sind. Weil man dabei Zahlen zueinander in Relation setzt, nennt man dieses Zeichen in der Mathematik Relationszeichen.

lineare-ungleichungen.jpg

Was ist ein Relationszeichen? – Definition

Relationszeichen werden oft auch Vergleichszeichen genannt. Das sind mathematische Zeichen, die für die Darstellung der Größenverhältnisse zweier Zahlen oder Terme benutzt werden. Im Folgenden schauen wir uns ein paar Relationszeichen genauer an.

Relationszeichen bei Gleichungen

Das bekannteste Relationszeichen ist das Gleichheitszeichen. Dieses besagt, dass die beiden mathematischen Ausdrücke, die links und rechts von dem Gleichheitszeichen stehen, denselben Wert haben. In diesen Fällen handelt es sich um eine Gleichung.

Beispiele:

$4=4$

oder auch

$5+2 = 7$.

Wenn nun die Ausdrücke auf den beiden Seiten verschiedene Werte haben, handelt es sich nicht mehr um eine Gleichung, sondern um eine Ungleichung. Das Gleichheitszeichen ist in diesem Fall nicht mehr das geeignete Relationszeichen.

Relationszeichen bei Ungleichungen

Bei einer Ungleichung können verschiedene Relationszeichen Verwendung finden. Welche das sind, schauen wir uns nun an.

Kleiner als:

Das Kleiner-als-Zeichen wird verwendet, wenn auf der linken Seite der Ungleichung ein kleinerer Wert steht als auf der rechten Seite, also zum Beispiel:

$5<6$

Man liest: $5$ ist kleiner als $6$.

Größer als:

Das Größer-als-Zeichen wird verwendet, wenn auf der linken Seite der Ungleichung ein größerer Wert steht als auf der rechten Seite, also zum Beispiel:

$8>7$

Man liest: $8$ ist größer als $7$.

Kleiner/gleich:

Das Kleiner-gleich-Zeichen ist eine Kombination aus dem Gleichheitszeichen und dem Kleiner-als-Zeichen. Es bedeutet, dass der Ausdruck auf der linken Seite der Ungleichung kleiner als oder genauso groß wie der Ausdruck auf der rechten Seite der Ungleichung ist. Man verwendet dieses Zeichen oft, wenn man eine Aussage für mehrere zulässige Werte zusammenfassen möchte. Zum Beispiel ist die Ungleichung

$a\le 10$

richtig für alle Werte von $a$, die kleiner oder gleich $10$ sind.

Kannst du dir nun schon denken, was das Relationszeichen $\ge$ bedeutet?

Größer/gleich:

Genau, es bedeutet, dass der mathematische Ausdruck auf der linken Seite der Ungleichung größer als oder genauso groß ist wie der Ausdruck auf der rechten Seite der Ungleichung. Zum Beispiel ist die Ungleichung

$a\ge 10$

richtig für alle Werte von $a$, die größer oder gleich $10$ sind.

Relationszeichen – Beispiele

Nun haben wir gesehen, welche Relationszeichen es gibt, und fragen uns, wann man die verschiedenen Relationszeichen außerhalb des Matheunterrichts verwendet.
Wenn sich zum Beispiel ein Fischer an bestimmte Fanggrenzen halten muss, dann können wir die gesetzliche Vorgabe für die täglich gefangene Fischmenge $f$ folgendermaßen als Ungleichung formulieren:

$f\le 999\,\pu{kg}$

Das heißt, dass der Fischer nur eine Menge von $999\,\pu{kg}$ oder weniger pro Tag fangen darf. Damit wären zum Beispiel $800\,\pu{kg}$ als täglicher Fang erlaubt, aber auch genau $999\,\pu{kg}$ wären in Ordnung. Wenn der Fang dagegen die Ungleichung verletzt, zum Beispiel mit einer Menge von $1\,200\,\pu{kg}$, dann verstößt der Fischer gegen die gesetzliche Vorgabe und muss mit einer Strafe rechnen.

kleiner-gleich.jpg

Gleichungen und Ungleichungen – Zusammenfassung

Wir haben nun verschiedene Relationszeichen kennengelernt, mit denen wir Zahlen vergleichen können. Hier fassen wir diese noch einmal zusammen:

Zeichen Bedeutung Beispiel
$=$ gleich $6=6$
$>$ größer als $8>6$
$\ge$ größer/gleich $8\ge6$ und auch $8\ge8$
$<$ kleiner als $4<5$
$\le$ kleiner/gleich $4\le 5$ und auch $4\le4$

Sind zwei mathematische Ausdrücke mit dem Gleichheitszeichen verbunden, dann sprechen wir von einer Gleichung. Sind zwei Ausdrücke mit einem der anderen Relationszeichen verknüpft, dann liegt eine Ungleichung vor.

Zusätzlich zum Text und dem Video findest du hier auf der Seite noch Arbeitsblätter und Übungen zum Thema Gleichungen und Ungleichungen. Dort kannst du dein Wissen gleich testen.

Teste dein Wissen zum Thema Relationszeichen!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Gleichungen und Ungleichungen

Die Angelsaison hat begonnen. Das hier ist Hauke. Er möchte die Fischpopulationen im Meer vor der Überfischung retten. Haukes Bruder Knut hingegen lebt vom Fischfang, also will er so viele Fische wie möglich fangen. Dabei macht er sich nicht mal die Mühe, die Vorschriften zu lesen. Damit Hauke seinem Bruder die Gesetzeslage klarmachen kann, muss er Gleichungen und Ungleichungen kennen. Die Fischereivorschriften besagen, dass jeder Fischer genau 999 Kilogramm Fisch pro Monat fischen darf. Schauen wir also, wie viel Knut in jedem der letzten drei Monate gefangen hat. Für die Fischmenge in Kilogramm nutzen wir die Variable 'f'. Im ersten Monat hat Knut 999 Kilogramm Fisch gefangen. Mit welchem Symbol können wir das Größenverhältnis zwischen der Menge, die Knut gefangen hat, und der Menge, die die Vorschriften erlauben, darstellen? Aus all den Zeichen und Symbolen, die uns zur Verfügung stehen, sollten wir das Gleichheitszeichen wählen. Zahlen, die links und rechts eines Gleichheitszeichens stehen, haben denselben Wert. Im zweiten Monat hat Knut 800 Kilogramm gefangen. Mit welchem Symbol können wir das Größenverhältnis zwischen 800 und 999 darstellen? Wir wissen, dass 800 ungleich 999 ist. Es handelt sich also nicht mehr um eine Gleichung, sondern um eine Ungleichung. Wir müssen also ein anderes Zeichen benutzen, um die Zahlen zu vergleichen. Das Zeichen, das wir nutzen, nennt sich Kleiner-als-Zeichen, da die kleinere der beiden Zahlen zuerst steht. Man liest das so: 800 ist kleiner als 999. Im dritten Monat hat Knut ein KLEIN WENIG mehr als 999 Kilogramm gefangen 1250 Kilogramm, um genau zu sein. Wie stellen wir das Größenverhältnis zwischen Knuts Fang im dritten Monat und der erlaubten Fangmenge von 999 Kilogramm dar? Die Zahl auf der linken Seite ist größer als die auf der rechten, deswegen können wir das Verhältnis mit dem Größer-als-Zeichen darstellen. Das sieht aus wie das Kleiner-als-Zeichen, nur umgedreht. Nicht gut für Knut da er im dritten Monat zu viel gefangen hat, muss er ein Bußgeld zahlen! Nun kennen wir also das Größer-als-Zeichen und das Kleiner-als-Zeichen. Da es in Ordnung ist, weniger als 999 Kilogramm zu fangen, und da es auch okay ist, exakt 999 Kilogramm zu fangen, gibt es doch vielleicht noch ein anderes Zeichen, das wir nutzen können. Ja, das gibt es wirklich! Wenn wir das Kleiner-als-Zeichen und das Gleichheitszeichen kombinieren, erhalten wir das hier: Nun haben wir eine mathematische Aussage, die korrekt alle Fälle beschreibt, in denen die Fischer nicht zur Kasse gebeten werden. Apropos Vorschriften: Da es NICHT erlaubt ist, 1000 Kilogramm Fisch oder mehr zu fangen, brauchen wir dafür auch noch ein Zeichen. Und natürlich gibt es so ein Zeichen! Wenn wir das Größer-als-Zeichen und das Gleichheitszeichen kombinieren, erhalten wir das hier: Nun haben wir mathematische Aussagen, die die Fischereivorschriften korrekt darstellen. Um die unterschiedlichen Fälle darzustellen, haben wir verschiedene Zeichen benutzt. Das Zeichen für Gleichheit ist das Gleichheitszeichen. Das Zeichen nutzt du, wenn zwei Werte exakt gleich groß sind, wie bei 'x' ist gleich 'y' oder bei 999 ist gleich 999. Für Ungleichheit gibt es hingegen vier unterschiedliche Zeichen. Wir nutzen das Kleiner-als-Zeichen, wenn der Wert auf der linken Seite der Ungleichung kleiner als der auf der rechten ist, zum Beispiel bei 800 ist kleiner als 999. Wir nutzen das Kleiner-gleich-Zeichen, wenn der Wert auf der linken Seite der Ungleichung kleiner oder genau so groß wie der auf der rechten Seite ist. 800 und 999 sind beide kleiner-gleich 999. Wir nutzen das Größer-als-Zeichen, wenn der Wert auf der linken Seite der Ungleichung größer ist als der auf der rechten, zum Beispiel bei 1250 ist größer als 999. Und schlussendlich nutzen wir das Größer-gleich-Zeichen, wenn der Wert auf der linken Seite der Ungleichung größer oder genau so groß wie der auf der rechten ist. Da 1250 mindestens so groß wie 1000 ist, können wir das Größer-als-Zeichen verwenden. Zurück zu Knut. Mal schauen, wie viel Fisch er heute gefangen hat. Häh!? Ist dir DIESE Fischart schon mal untergekommen?

10 Kommentare
  1. THE END WAS FUNNY I LIKE THIS VIDEO 😂

    Von Sumeya ❣️, vor etwa einem Monat
  2. War ganz gut erklärt🙂

    Von Manuel, vor etwa 2 Monaten
  3. cool

    Von Bjarne, vor 7 Monaten
  4. war ok

    Von Denise, vor mehr als einem Jahr
  5. Süper

    Von Master-X-Fire, vor fast 3 Jahren
Mehr Kommentare

Gleichungen und Ungleichungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Gleichungen und Ungleichungen kannst du es wiederholen und üben.
  • Beschreibe die Ungleichungen.

    Tipps

    Ist eine Zahl $f$ nicht kleiner als die Zahl $g$, so kannst du schreiben:

    $f \geq g$

    Das Vergleichszeichen $<$ zeigt mit der Spitze zu der kleineren Zahl.

    Fünf Äpfel sind mehr als drei Äpfel. Die passende Ungleichung lautet:

    $5 > 3$

    Lösung

    Mit den verschiedenen Vergleichszeichen

    • $<$, $>$, $=$, $\leq$ und $\geq$
    kannst du Gleichungen und Ungleichungen beschreiben.

    Bei strikten Ungleichungen verwendest du die Zeichen $>$ und $<$. Ist bei den Ungleichungen auch die Gleichheit zulässig, so kannst du die verschiedenen Relationen mit den kombinierten Zeichen $\leq$ und $\geq$ beschreiben.

    Strikte Ungleichung

    • $<$ weniger als
    Bei Knuts Fischfang dürfen pro Monat nicht mehr als $999~\text{kg}$ gefangen werden. Wiegt der Fang weniger als $999~\text{kg}$, so muss Knut keine Strafe zahlen, denn dann ist die Regel erfüllt. Fängt Knut z. B. $800~\text{kg}$ Fisch, so lautet die passende Ungleichung $800 < 999$, denn $800$ ist weniger als $999$.

    • $>$ mehr als
    Wiegt Knuts Fang mehr als $999~\text{kg}$, so muss er eine Strafe zahlen. Bei einem Fang von $1 250~\text{kg}$ schreibt Knut die Ungleichung $1 250 > 999$, denn $1 250$ ist mehr als $999$ und die Spitze des Vergleichszeichens zeigt immer zur kleineren Zahl. Ist der Fang gleich $999~\text{kg}$, so kommt Knut ebenfalls straffrei aus, denn er hat nicht mehr als $999~\text{kg}$ Fisch gefangen.

    Kombinierte Relationszeichen

    Diese kannst du verwenden, um Ungleichungen und Gleichungen zu kombinieren. Sie finden Verwendung, wenn die Ausdrücke nicht mehr als oder nicht weniger als in mathematischen Zeichen geschrieben werden sollen:

    • $\leq$ weniger oder gleich
    Die Ungleichung $f \leq 999$ besagt, dass weniger als $999~\text{kg}$ Fisch gefangen werden dürfen oder genau gleich $999~\text{kg}$. Nicht erlaubt ist, mehr als $999~\text{kg}$ Fisch zu fangen. Du kannst den Sachverhalt durch die Ungleichung $f~\text{kg} \leq 999~\text{kg}$ ausdrücken. Das Zeichen $\leq$ bedeutet also dasselbe wie nicht mehr als.
    • $\geq$ mehr oder gleich
    Umgekehrt bedeutet das Zeichen $\geq$ dann nicht weniger als. Eine Ungleichung mit diesem Zeichen ist genau dann falsch, wenn die linke Seite weniger beträgt als die rechte Seite.
  • Gib die Relation der Zahlen an.

    Tipps

    Bei dem Vergleichszeichen kannst du an den Schnabel eines Vogels denken, der immer zur größeren Beute hin geöffnet ist.

    Die Zahl $33$ ist kleiner als die Zahl $44$, daher schreibst du:

    $33<44$

    Die Zahl $76$ ist größer als die Zahl $67$, daher lautet die Ungleichung:

    $76 > 67$

    Lösung

    Die Vergleichszeichen $<$ und $>$ verwendest du, um die Verschiedenheit von Zahlen genauer anzugeben. Sind zwei Zahlen verschieden, so ist immer eine größer als die andere. Die Vergleichszeichen $<$ und $>$ kannst du dir wie den Schnabel eines Vogels oder das Maul eines Krokodils vorstellen, das immer zu der größeren Beute hin geöffnet ist. Umgekehrt zeigt die Spitze des Vergleichszeichens immer zur kleineren Zahl.

    Für die Zahlen oben findest du folgende Relationen:

    • $21>12$, denn zwölf ist kleiner als einundzwanzig.
    • $999 = 999$, denn die beiden Zahlen links und rechts sind gleich groß.
    • $49<51$, denn die Zahl links ist um $2$ kleiner als die Zahl rechts.
    • $1 250>999$, denn die Zahl links hat mehr Stellen als die Zahl rechts und ist daher größer.
    • $800>999$: Die Zahl links ist größer als die Zahl rechts, denn $900$ liegt zwischen den beiden Zahlen $999$ und $800$.
  • Prüfe die Ungleichungen.

    Tipps

    Rechne die Terme aus und vergleiche sie dann.

    Je mehr Stellen eine Zahl hat, desto größer ist sie.

    Lösung

    Mit den Zeichen $<$ und $>$ kannst du Ungleichungen von Zahlen beschreiben. Sind zwei Zahlen verschieden, so ist eine Zahl zwangsläufig größer als die andere. Das Zeichen $=$ darfst du nur setzen, wenn der Wert auf beiden Seiten gleich ist. Du kannst aber den Wert auf den beiden Seiten einer Gleichung auf verschiedene Weise hinschreiben. So ist z. B. $2+3=5$, denn die beiden Seiten sind nicht Term für Term identisch, haben aber denselben Wert.

    Folgende (Un-)Gleichungen sind richtig:

    • $2+3 \leq 2+5$, denn addierst du zu $2$ links eine kleinere Zahl als rechts, so erhältst du links eine kleinere Summe als rechts.
    • $1+2+3 \leq 3+2+1$: Die Summe auf beiden Seiten ist $6$ und der Gleichheitsfall ist bei dem Vergleichszeichen $\leq$ nicht ausgeschlossen.
    • $12 345 < 123 456$: Die Zahl links hat weniger Stellen als die Zahl rechts, daher ist sie kleiner.
    Folgende (Un-)Gleichungen sind falsch:

    • $2\cdot ({-12}) \leq 3\cdot ({-12})$: Bei der Multiplikation muss man die Vorzeichen beachten. Multipliziert man beide Seiten mit derselben positiven Zahl, so bleibt das Relationszeichen erhalten. Aus $2 \leq 3$ folgt also: $2 \cdot 12 \leq 3 \cdot 12$. Multipliziert man aber beide Seiten mit derselben negativen Zahl, dreht sich das Relationszeichen um. Richtig ist also: $2\cdot ({-12}) \geq 3\cdot ({-12})$.
    • $4-1 = 1-4$: Vertauscht man in einer Differenz Minuend und Subtrahend, sind die Ergebnisse in der Regel nicht gleich.
    • $0 \cdot 17 \geq 0+17$: Du kannst beide Seiten ausrechnen und erhältst $0 \cdot 17=0$ links und $0+17=17$ rechts. Aber es gilt: $0 < 17$.
  • Vervollständige die Sätze.

    Tipps

    Ist die Ungleichung $a \geq b$ richtig, so ist die Ungleichung $a<b$ falsch.

    Die kombinierten Ungleichungen kannst du durch nicht mehr als und durch nicht weniger als ausdrücken.

    Ist das Vergleichszeichen $>$ zur kleineren Zahl hin geöffnet, so ist die Ungleichung falsch.

    Lösung

    Ungleichungen kannst du für verschiedene Zahlen aufstellen. Anstelle der konkreten Zahlen kannst du auch die Buchstaben $a$ und $b$ schreiben. Welche Ungleichung für die Buchstaben $a$ und $b$ gilt, hängt dann davon ab, welche Zahlen du für die Buchstaben einsetzt. Umgekehrt kannst du auch aus einer Ungleichung mit Buchstaben erschließen, welche Zahlen du für die Buchstaben einsetzen kannst und welche nicht.

    Folgende Aussagen sind richtig:

    • „Gilt die Ungleichung $a \leq b$, ... so ist $a$ nicht größer als $b$.“ Denn die Ungleichung besagt, dass die Zahl $a$ kleiner als die Zahl $b$ ist oder gleich groß wie $b$.
    • „Ist die Ungleichung $a < b$ falsch, ... so ist $b$ kleiner als $a$ oder $b=a$.“ Das Vergleichszeichen in der falschen Ungleichung ist zu $b$ hin geöffnet. Also ist $b$ nicht größer als $a$. Daher ist $b$ kleiner als $a$ oder die beiden Zahlen $a$ und $b$ sind gleich, also $b=a$.
    • „Ist die Ungleichung $a \geq b$ richtig, ... so ist die Ungleichung $a<b$ falsch.“ Die Ungleichung bedeutet, dass $a$ größer als $b$ ist oder dass die beiden Zahlen gleich groß sind. In keinem Fall kann dann $a$ kleiner als $b$ sein.
    • „Ist die Ungleichung $a \geq b$ falsch, ... so ist die Ungleichung $a < b$ richtig.“ Zwei Zahlen $a$ und $b$ können gleich oder verschieden sein. Sind sie verschieden, so ist entweder $a$ größer als $b$ oder $a$ kleiner als $b$. Die beiden ersten Möglichkeiten werden ausgeschlossen, wenn die Ungleichung $a \geq$ falsch ist. Daher muss $a$ kleiner als $b$ sein.
  • Vervollständige die Sätze.

    Tipps

    Verwende die kombinierten Relationszeichen für Beschreibungen, in denen die Gleichheit und eine der beiden Ungleichungen zulässig ist.

    Eine strikte Ungleichung ist falsch, wenn die umgekehrte Ungleichung mit Gleichheit richtig ist.

    Weil $123$ kleiner ist als $1 234$, ist auch die folgende Ungleichung richtig:

    $123 \leq 1 234$

    Lösung

    Folgende Sätze sind richtig:

    • „Rechts und links des Zeichens $=$ ... sind die Zahlen gleich groß.“ Nur bei einer Gleichung verwendest du das Zeichen „$=$“. Die Gleichung bedeutet, dass die beiden Zahlen rechts und links denselben Wert haben, d. h., dass sie gleich groß sind.
    • „Bei einer Ungleichung mit dem Zeichen $<$ ... ist die Zahl links kleiner als die Zahl rechts.“ Denn die Spitze des Vergleichszeichens zeigt immer zur kleineren Zahl.
    • „Bei einer Ungleichung mit dem Zeichen $\geq$ ... können die beiden Zahlen gleich groß sein.“ Das kombinierte Vergleichszeichen lässt ungleiche und gleiche Zahlen zu. Sind die Zahlen ungleich, so muss die Zahl links größer sein als die Zahl rechts.
    • „Sind bei einer Ungleichung mit dem Zeichen $<$ die Zahlen rechts und links gleich groß, so ... ist die Ungleichung falsch.“ Die Relationszeichen $<$ und $>$ stehen nur zwischen verschiedenen Zahlen. Werden sie zwischen zwei gleiche Zahlen gesetzt, so ist diese Ungleichung falsch.
    • „Steht zwischen den Zahlen $1 250$ und $999$ das Zeichen $>$, so ... ist die Ungleichung richtig.“ Die Zahl $999$ ist nämlich kleiner als die Zahl $1 250$ und die Spitze des Vergleichszeichens zeigt immer zur kleineren Zahl.
  • Prüfe die Aussagen.

    Tipps

    Setze für die Buchstaben $a$ und $b$ konkrete Zahlen ein. Wird die Aussage mit konkreten Zahlen falsch, so ist auch die Aussage mit den Buchstaben $a$ und $b$ falsch.

    Lösung

    Folgende Aussagen sind richtig:

    • „Addierst du auf beiden Seiten einer Ungleichung dieselbe Zahl, so bleibt die Ungleichung erhalten.“ Die Addition derselben Zahl macht beide Zahlen nämlich um dasselbe Maß größer (oder kleiner). Ist die linke Zahl größer als die rechte, so gilt dasselbe für die Summen. Für die anderen Ungleichungen gilt das ebenso.
    • „Ist $a \geq b$ und $a\leq b$, so sind $a$ und $b$ gleich.“ Wenn beide Ungleichungen richtig sind, können $a$ und $b$ nur gleich groß sein. Die Ungleichungen $a>b$ und $a<b$ können nämlich nicht beide richtig sein. Genauso können die Gleichung $a=b$ und die Ungleichung $a<b$ nicht beide richtig sein.
    Folgende Aussagen sind falsch:

    • „Multiplizierst du beide Seiten einer Ungleichung mit derselben Zahl, so bleibt die Ungleichung erhalten.“ Das gilt nur, wenn die Zahl, mit der du multiplizierst, positiv ist. Bei Multiplikation mit einer negativen Zahl dreht sich das Vergleichszeichen um.
    • „Für zwei Zahlen $a$ und $b$ ist genau eine der beiden Ungleichungen $a \leq b$ und $b \geq a$ richtig und die andere falsch.“ Die Ungleichungen können auch beide richtig sein, nämlich genau dann, wenn $a=b$. Sie können aber nicht beide falsch sein.
    • „Subtrahierst du auf beiden Seiten einer Ungleichung dieselbe Zahl, so bleibt die Ungleichung nicht erhalten.“ Das Subtrahieren einer Zahl ist dasselbe wie das Addieren der Gegenzahl. Für die Addition hatten wir schon gesehen, dass sie die Ungleichung erhält.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'982

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'249

Lernvideos

35'811

Übungen

32'570

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden