Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Gleichungen lösen – Übung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Gleichungen Lösen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 162 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Gleichungen lösen – Übung
lernst du in der Primarschule 5. Klasse - 6. Klasse - Sekundarstufe 1. Klasse - 2. Klasse

Grundlagen zum Thema Gleichungen lösen – Übung

In diesem Video wird das Lösen von Gleichungen mit einer Variablen geübt. Nach einer kurzen Auffrischung der "Basics" zu Variablen, Rechenausdrücken und Gleichungen werden zwei Lösungsverfahren geübt. Zunächst das Lösen durch geschicktes Probieren, dann das Lösen durch Rückwärtsrechnen. Vor allem das Rückwärtsrechnen führt sicher zum Ziel. In einer der Übungen ist auch das Aufstellen einer Gleichung zu einem gegebenen Problem nötig. Dieser Schritt ist ja genauso wichtig wie das Lösen: Wie kommst du überhaupt auf die richtige Gleichung? Gleichungen fallen ja nicht vom Himmel ... Meister auch nicht, deshalb also jetzt ans Üben!

Transkript Gleichungen lösen – Übung

Hallo. In diesem Video kannst du das Lösen von Gleichungen mit einer Variablen üben. Zwei Verfahren zum Lösen kennst du: a) durch geschicktes Probieren, b) durch Rückwärtsrechnen. Beide werden in den Übungen vorkommen.

Zuvor werden wir kurz wiederholen, was eine Variable in einem Rechenausdruck ist, was eine Gleichung ist und wie die Lösungsverfahren funktionieren. Dann geht es aber auch schon los mit üben.

Wiederholung: Rechenausdruck, Gleichung, Lösen durch Probieren, Rückwärtsrechnen

Zunächst also eine kurze Auffrischung. Ein Rechenausdruck – man sagt auch Term dazu - kann nicht nur Rechenzeichen und Zahlen enthalten, sondern auch Variablen. Variablen werden durch Kleinbuchstaben wie x oder y gekennzeichnet und sind Platzhalter für Zahlen.

Werden zwei Terme durch ein Gleichheitszeichen verknüpft, so wird aus ihnen eine Gleichung.

Hier ein Beispiel: 5 mal x + 3 = 18. Je nachdem, was du für x einsetzt, wird aus der Gleichung eine wahre Aussage oder eine falsche. Setzt du x = 2 ein, steht die Aussage 5 mal 2 + 3 =18 da, und das ist falsch, denn 5 mal 2 + 3 ist 13 und nicht 18. Für x = 3 hingegen wird aus der Gleichung eine wahre Aussage, denn 5 mal 3 + 3 ist 18.

Genau solche Werte für x, für die aus einer Gleichung eine wahre Aussage wird, nennt man Lösung. Man sagt auch: Dieser Wert für x, als x = 3 im Beispiel, erfüllt die Gleichung.

Mit diesem Beispiel haben wirauch schon eines der beiden Lösungsverfahren wiederholt, das Lösen durch Probieren. x = 2 war keine Lösung, x = 3 hingegen ein Treffer. Das übst du gleich in der ersten Aufgabe

Beim anderen Verfahren, dem Rückwärtsrechnen, geht man systematischer vor. Wenn x mal 5 und anschließend plus 3 zu 18 führt, kann ich auch bei 18 anfangen und zunächst minus 3 rechnen – das gibt 15 – und dann geteilt durch 5, dann bin ich wieder beim Ausgangspunkt x - habe also meine Lösung! 15 : 5 ist ist gleich 3, x = 3 ist die Lösung.

Rückwärtsrechnen besteht also darin, die Rechenzeichen umzukehren: Aus Plus wird minus und umgekehrt, aus mal wird geteilt und umgekehrt. Mit dem Rückwärtsrechnen beschäftigen sich zwei weitere Aufgaben.

Übung 1

Gegeben ist die Gleichung 5 minus 4 mal x + 1 = -11. Finde die Lösung durch Probieren.

Für die Lösung dieser Aufgabe halten wir unsere Probedurchgänge in einer Tabelle fest. 1000 einzusetzen ist sicher nicht sinnvoll, die Gleichung “sieht” ((Anführungszeichen sozusagen betonen)) nach einer kleinen Zahl als Lösung aus.

Probieren wir es mit x=1: 5 - 4 mal 1 plus 1 = 5 - 4 mal 2 = 5 - 8 = -3 und nicht -11 . Du musst also von 5 eine größere Zahl abziehen, also probierst du als nächstes 2. Solche Überlegungen stecken hinter der Bezeichnung “geschicktes” Probieren.

5 - 4 mal 2 + 1 = 5- 4 mal 3 = 5 minus 12 = -7. Immer noch nicht die Lösung, aber schon näher dran. Du ahnst, dass es mit x=3 klappt: 5- 4 mal 3 + 1 = 5 - 4 mal 4 = 5 - 16 = -11. Treffer! x = 3 ist die Lösung.

Übung 2

Jetzt kommt das Rückwärtsrechnen dran. Gegeben ist die Gleichung 6 mal x + 111 = 141. Du kannst sie als Diagramm schreiben: x mal 6 ist 6x + 111 = 141.

Nun wird rückwärts gerechnet, wobei du die Rechenzeichen umkehrst: 141 minus 111 ist gleich 30, 30 geteilt durch 6 ist gleich 5. Das ist die Lösung: x = 5

Übung 3

Zum Abschluss eine Aufgabe, bei der wir die Gleichung erst finden müssen. Ein Altersrätsel:

  • Max, sein Vater und sein Opa sind zusammen 115 Jahre alt.
  • Der Vater ist 31 Jahre älter als Max, und der Opa 29 Jahre älter als der Vater.
  • Dein Arbeitsauftrag lautet: Berechne das jeweilige Alter von Max, seinem Vater und Opa.

Klar ist: wenn du das Alter von Max weißt, weißt du auch, wie alt Vater und Opa sind. Also wählst du das Alter von Max als Variable. Der Vater ist dann x + 31 Jahre alt und der Opa ist x + 31 + 29 = x + 60 Jahre alt. Das Alter von allen zusammen ist dann x + x+31 + x+ 60 = 115.

Wir fassen die Variablen und Zahlen im Term vor dem Gleichheitszeichen getrennt zusammen und erhalten als Gleichung: 3x + 91 =115.

Die Lösung erhältst du durch Rückwärtsrechnen: Aus x mal + 91 = 115 wird 115 - 91 = 24, und 24 geteilt durch 3 = 8.

Die Lösung lautet x = 8. Das heißt: Max ist 8 Jahre alt, der Vater ist x + 31 gleich 8 + 31, also 39 Jahre alt, der Opa ist x + 60 gleich 8 + 60 gleich 68 Jahre alt.

Zusammenfassung

Das waren drei Übungen zum Thema “Gleichungen lösen”. Du siehst: Das Rückwärtsrechnen führt für solche Gleichungen, wie sie in den Übungen vorkamen, immer zum Ziel. Probieren ist auch oft sehr hilfreich, kann aber bei komplizierteren Gleichungen auch viel Zeit beanspruchen.

Überlege also immer zu Beginn, wenn du dich an eine Aufgabe machst, mit welchem Verfahren du die Aufgabe am geschicktesten löst. So, das war’s vorerst zum Thema Gleichungen lösen. Tschüss!

32 Kommentare
  1. daanke ich hab im test 17/18 punkten

    Von Maximilian, vor 5 Monaten
  2. Ich finde das Video gut

    Von Lotta, vor fast 2 Jahren
  3. was ist wenn man die variable nicht weiß und aber auch das Endergebnis nicht weiß?

    Von Jason, vor etwa 2 Jahren
  4. cool

    Von nO drama Lama, vor mehr als 2 Jahren
  5. Gutes Video! =D

    Von Dogolino, vor mehr als 2 Jahren
Mehr Kommentare

Gleichungen lösen – Übung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Gleichungen lösen – Übung kannst du es wiederholen und üben.
  • Bestimme, durch welche Zahl die Gleichung 6 $\cdot$ x + 111 = 141 erfüllt wird.

    Tipps

    Finde die Lösung, indem du rückwärtsrechnest.

    Beginne beim Ergebnis der Gleichung und führe die Rechenschritte in umgekehrter Reihenfolge und mit umgekehrten Rechenzeichen aus.

    Lösung

    Wir kennen zwei Methoden zum Lösen von Gleichungen. Eine ist das „geschickte Probieren“ und bei der anderen rechnest du rückwärts.

    Hier bieten sich beide Möglichkeiten an, aber rechnen wir rückwärts, da das Probieren manchmal viel Zeit in Anspruch nehmen kann.

    Wenn wir die Gleichung 6 $\cdot$ x + 111 = 141 vor uns haben, überlegen wir, welches normalerweise unsere Vorgehensweise wäre, wenn wir x schon kennen würden:

    1. Zuerst würden wir sicherlich 6 $\cdot$ x berechnen,
    2. dann würden wir 111 addieren,
    3. und letztlich hätten wir das Ergebnis 141.
    Beim Rückwärtsrechnen fangen wir, wie du dir denken kannst, hinten an und kehren alle Rechenzeichen um:
    1. Wir gehen vom Ergebnis 141 aus und subtrahieren 111.
    2. Das Ergebnis, nämlich 30, dividieren wir nun durch 6.
    3. Jetzt liegt uns der Wert für x vor, den wir gesucht haben. Er lautet x = 5.
    Mit Rückwärtsrechnen haben wir zur Lösung x = 5 gefunden.

  • Bestimme das jeweilige Alter von Max, seinem Vater und Opa.

    Tipps

    Um wie viel Jahre ist Max' Opa älter als er selbst?

    Lösung

    Max, sein Vater und sein Opa sind zusammen 115 Jahre alt. Außerdem ist uns bekannt, dass Max' Vater 31 Jahre älter ist als er selbst und sein Opa 29 Jahre mehr auf dem Buckel hat als sein Vater.

    Wenn wir das Alter von Max mit x beschreiben, wissen wir, dass das Alter seines Vaters mit x + 31 beschrieben werden kann.

    Das Alter des Opas wird nicht etwa mit x + 29, sondern mit x + 31 + 29 = x + 60 beschrieben.

    Damit können wir eine Gleichung aufstellen, die das jeweilige Alter addiert und 115 ergibt:

    x + (x + 31) + (x + 60) = x + x + 31 + x + 60 = 115.

    Das können wir zusammenfassen zu:

    3 $\cdot$ x + 91 = 115.

    Mit der bekannten Methode des Rückwärtsrechnens nähern wir uns der Lösung.

    1. Zuerst rechnen wir 115 - 91 = 24.
    2. Dann berechnen wir 24 $:$ 3 = 8.
    3. Nun kennen wir die Lösung. Das Alter von Max beträgt x = 8 Jahre.
    Jetzt ist es leicht, auf das Alter der anderen zu schließen.

    Der Vater ist somit 39 Jahre alt, da uns ja x + 31 bekannt war, und sein Opa 8 + 60 = 68 Jahre.

  • Bestimme die Lösungen der Gleichungen.

    Tipps

    Probiere geschickt oder rechne rückwärts.

    Entscheide von Gleichung zu Gleichung neu, welchen Weg du gehen möchtest.

    Fange mit den Gleichungen an, welche dir leichter fallen.

    Lösung

    Es gibt immer mehrere Wege, die ans Ziel führen. Manchmal ist es günstiger, die Lösung durch geschicktes Probieren zu ermitteln, manchmal erkennst du früh, dass Probieren zu lange dauern würde, und fängst gleich an, rückwärts zurechnen.

    Die Gleichung 7 $\cdot$ x + 3 = 31 bietet eine gute Möglichkeit, durch geschicktes Probieren zur Lösung zu finden. Hier merkst du schnell, dass x = 1 und x = 2 zu klein geschätzt sind. Aber dann kommt man doch eigentlich ziemlich schnell zur Lösung x = 4.

    Spätestens bei der Gleichung (4 $\cdot$ (x + 3)) $:$ 2 = 8 ist es besser, die Lösung durch Rückwärtsrechnen zu ermitteln. Nachdem du untersucht hast, in welcher Reihenfolge du vorgehst, wenn du gewöhnlicherweise einen Term ausrechnest, drehst du Reihenfolge und Rechenzeichen einfach um. Das sieht folgendermaßen aus:

    1. 8 $\cdot$ 2 = 16,
    2. 16 $:$ 4 = 4,
    3. 4 - 3 = 1.
    Die Lösung, die diese Gleichung erfüllt, lautet x = 1.

    Bei den anderen Gleichungen kannst du dir aussuchen, welche Methode du wählst.

    Häufig ist es sinnvoll, am Anfang schnell einen Test zu machen und eine Zahl probehalber einzusetzen. Wenn du merkst, dass du auf diese Weise nicht weiterkommst, entscheidest du dich anders und wählst mit dem Rückwärtsrechnen die sichere Variante.

  • Untersuche, welche Gleichung und welche Lösung zu unserem Problem gehören.

    Tipps

    Entscheide, welche Informationen wertvoll sind und welche du nicht brauchst, um die richtige Gleichung zu bestimmen.

    Lösung

    Der Wert einer Aktie von MoBit ist um 10 € gestiegen, sodass sie nun 92 € wert ist.

    Die Information, dass eine MoBit-Aktie jetzt doppelt so viel wert ist wie die Aktie des anderen Unternehmens, ist für die Gleichung nicht wichtig, da wir wissen wollen, welche Gleichung die Wertentwicklung von MoBit beschreibt und wie viel die Aktie zuvor Wert war.

    So kannst du sicherlich die richtige Gleichung aufstellen. Sie lautet:

    x + 10 = 92.

    Um x zu ermitteln, können wir nun einfach 92 - 10 = 82 rechnen. Die Aktie war zuvor 82 € wert.

  • Gib die Werte an, die du beim Einsetzen verschiedener Zahlen für x in den Term 5 - 4 $\cdot$ (x + 1) erhältst.

    Tipps

    Beachte Punkt- vor Strichrechnung.

    Lösung

    Der Vorteil von geschicktem Probieren ist, dass es in der Regel sehr leicht fällt, Zahlen für eine Variable in der Gleichung einzusetzen.

    Der Nachteil ist, dass es manchmal ziemlich lange dauern kann, bis du die richtige Lösung gefunden hast.

    Zur Übung wollen wir ein paar Zahlen x in den Term 5 - 4 $\cdot$ (x + 1) einsetzen.

    Fangen wir mit x = 1 an:

    5 - 4 $\cdot$ (1 + 1) = 5 - 4 $\cdot$ 2 = 5 - 8 = -3.

    Genauso funktioniert das auch für jede andere Zahl x, welche du in den Term einsetzen möchtest.

  • Berechne, wie viel kg Düngemittel sich in einem üblichen Sack befinden.

    Tipps

    Erstelle eine Gleichung, deren x die Menge Düngemittel in einem üblichen Sack beschreibt.

    Verwende gegebenenfalls das Distributivgesetz, bevor du rückwärtsrechnest.

    Lösung

    Mit x bezeichnen wir das Gewicht in kg, welches einer der üblichen Säcke Dünger wiegt. Bauer Eckhart kauft allerdings neben 2 Säcken mit der normalen Menge auch 4 Säcke, die um 10 kg schwerer sind, also insgesamt 340 kg Dünger.

    Mit diesen Informationen lässt sich eine Gleichung aufstellen, mit der wir x bestimmen können. Sie lautet:

    4 $\cdot$ (x + 10) + 2 $\cdot$ x = 340.

    Eine Schwierigkeit, hier rückwärts zu rechnen, liegt darin, dass du möglicherweise gar nicht so richtig weißt, wo du anfangen sollst. Vielleicht ist dir aufgefallen, dass x einmal in 4 $\cdot$ (x + 10) und einmal in 2 $\cdot$ x vorkommt.

    Dieses Problem lässt sich nur lösen, indem wir erkennen, dass sich bei 4 $\cdot$ (x + 10) das Distributivgesetz anwenden lässt. Wir lösen die Klammer also einfach auf:

    4 $\cdot$ (x + 10) = 4 $\cdot$ x + 4 $\cdot$ 10 = 4 $\cdot$ x + 40.

    Das können wir nun schon leichter mit 2 $\cdot$ x zusammenfassen:

    4 $\cdot$ x + 40 + 2 $\cdot$ x = 6 $\cdot$ x + 40.

    Nun gut. Und es galt ja: 6 $\cdot$ x + 40 = 340.

    Jetzt können wir ganz leicht durch Rückwärtsrechnen die Lösung ermitteln.

    1. 340 - 40 = 300,
    2. 300 $:$ 6 = 50,
    3. 50 ist unser gesuchter Wert x.
    In einem üblichen Sack Düngemittel sind 50 kg Dünger enthalten.

30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'875

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'393

Lernvideos

36'100

Übungen

32'648

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden