Exponentialschreibweise
Erfahre, wie du wiederholte Multiplikationen mit Potenzen abkürzen kannst. Entdecke Klammernregeln und den Einfluss von negativen Vorzeichen. Interessiert? Dies und vieles mehr findest du im folgenden Text.

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Exponentialschreibweise
Einführung: Exponentialschreibweise
Wie man ganze Zahlen multipliziert, weißt du ja schon. Häufig müssen wir aber in der Mathematik mehrmals die gleiche Zahl mit sich selbst multiplizieren. Damit wir nicht so viel schreiben müssen, hilft uns hierbei die Exponentialschreibweise. Aber was ist die Exponentialschreibweise?
Was ist die Exponentialschreibweise?
Die Exponentialschreibweise ist eine Kurzform für wiederholte Multiplikationen. Wir betrachten ein Beispiel:
- ist dabei die Basis, also die Zahl, die wiederholt multipliziert wird.
- ist der Exponent. Er besagt, wie oft man die Basis multipliziert.
Allgemein gilt: Eine beliebige rationale Zahl , die n-mal multipliziert wird, kann man in der Exponentialschreibweise schreiben als:
Klammern bei der Exponentialschreibweise
Wollen wir eine wiederholte Multiplikation von Brüchen in die Exponentialschreibweise umwandeln, so müssen wir Klammern setzen:
Der Bruch wird sechsmal mit sich selbst multipliziert. Dabei steht der Bruch in der Basis und die Zahl im Exponenten. Da sich der Exponent auf den gesamten Bruch und nicht nur auf den Zähler bezieht, setzen wir Klammern.
Auch wenn wir die wiederholte Multiplikation von negativen Zahlen in die Exponentialschreibweise umrechnen wollen, müssen wir Klammern setzen:
Zu der Exponentialschreibweise mit negativen Zahlen können wir aber noch mehr Aussagen treffen.
Negative Vorzeichen bei der Exponentialschreibweise
Negative Vorzeichen können bei der Exponentialschreibweise an unterschiedlichen Stellen stehen. Das negative Vorzeichen kann in der Basis stehen. Wir unterscheiden dabei zwei Fälle: Der Exponent ist gerade oder ungerade.
Von der Multiplikation ganzer Zahlen wissen wir bereits, dass für die Vorzeichen gilt:
- minus minus = plus
- minus plus = minus
- plus minus = minus
- plus plus = plus
Wir betrachten in folgender Tabelle einige Zahlen in Exponentialschreibweise:
Exponentialschreibweise | Multiplikation | Ergebnis | Exponent | Vorzeichen des Ergebnisses |
---|---|---|---|---|
gerade | positiv | |||
ungerade | negativ | |||
gerade | positiv | |||
ungerade | negativ |
Allgemein gilt:
- Ist die Basis negativ und der Exponent ungerade, so ist das Ergebnis negativ.
- Ist die Basis negativ und der Exponent gerade, so ist das Ergebnis positiv.
Das negative Vorzeichen kann auch vor der Potenz stehen. Wir betrachten den folgenden Fall:
Hierbei wird eine negative Zahl mit einer positiven Potenz multipliziert. Das Ergebnis ist daher negativ.
Zusammenfassung: Exponentialschreibweise
In diesem Video zur Exponentialschreibweise schreiben wir zunächst die wiederholte Multiplikation als Potenz. Dabei verwenden wir die Begriffe Basis und Exponent. Wir betrachten dann Beispiele, bei denen wir bei der Exponentialschreibweise Klammern setzen müssen. Zuletzt untersuchen wir, welchen Einfluss ein gerader und ungerader Exponent bei einer negativen Basis auf den Potenzwert hat.
Wenn du dies gut beherrschst, kannst du auch noch lernen, wie man die Wurzel in Exponentialschreibweise ausdrücken kann.
Hier bei sofatutor findest du auch Arbeitsblätter und interaktive Übungen zum Thema Exponentialschreibweise.
Transkript Exponentialschreibweise
Hauke und Knut ist ein ungewöhnlicher Fisch ins Netz gegangen. Knut meint, sie sollten ihn verkaufen und dann ihre Schulden bezahlen, aber Hauke zögert. Immerhin kann der Fisch SPRECHEN und außerdem behauptet er, wenn Hauke und Knut ihn freilassen, verwandelt er die Schulden der beiden in ein Vermögen, indem er die Exponentialschreibweise verwendet. Die Exponentialschreibweise ist eine Kurzform für wiederholte Multiplikationen. Wir können zum Beispiel 3 mal 3 mal 3 mal 3 als 3 hoch 4 schreiben. 3 ist die BASIS, also die Zahl, die wiederholt multipliziert wird. 4 ist der EXPONENT. Er besagt, wie oft man die Basis multipliziert. Allgemein ausgedrückt: Eine beliebige Zahl 'x', die n-mal multipliziert wird, kann man als x hoch n ausdrücken. Das trifft auf JEDE rationale Zahl zu, inklusive Brüche und negative Zahlen. Einhalb, mit sich selbst 6-mal multipliziert, kann man als Einhalb hoch 6 aufschreiben. Minus 5, mit sich selbst 6-mal multipliziert, kann man als Minus 5 hoch 6 aufschreiben. Beachte, dass wir die Brüche und negative Zahlen in Klammern setzen, um zu zeigen, dass die gesamte Zahl hoch n genommen wird. Das ist besonders wichtig, wenn man Potenzen in den Taschenrechner eingibt. Besuchen wir noch mal Hauke und Knut. Heute Morgen hatten sie 5 Euro Schulden. Sie hatten also MINUS 5 Euro. Der sprechende Fisch gibt ihnen drei magischen Möglichkeiten zur Auswahl. Schauen wir mal, ob wir die Möglichkeiten mittels Exponentenschreibweise bewerten können. Option 1: Sie können ihr Geld mal drei Fünftel nehmen, und zwar einmal am Tag und das 6 Tage lang. Wir schreiben das als minus 5 mal drei Fünftel, die mit sich selbst 6-mal multipliziert werden. Wie würdest du das in der Exponentenschreibweise ausdrücken? Nun, drei Fünftel ist unsere Basis, denn das ist die Zahl, die wir wieder und wieder multiplizieren. Das macht 6 zu unserem Exponenten, denn diese Zahl zeigt uns, wie oft wir die Basis mit sich selbst multiplizieren. Und all das multiplizieren wir mit minus 5. Okay, auf zur zweiten magischen Option. Hier können die beiden ihr Geld 9 Tage lang mit sich selbst multiplizieren. Welche Zahl ist in diesem Fall unsere Basis? Wir multiplizieren minus 5 mit sich selbst, das ist also unsere Basis. Das macht 9 zu unserem Exponenten. Die dritte und letzte Option des Fischs besagt, dass das Geld 8 Tage lang mit sich selbst multipliziert wird. Das können wir als minus 5 hoch 8 schreiben. Nun haben wir alle Optionen in der Exponentialschreibweise, also helfen wir Hauke und Knut, die beste Möglichkeit herauszufinden. Zunächst Option 1: Ist minus 5 mal drei Fünftel hoch 6 deiner Meinung nach positiv oder negativ? Nun, wir multiplizieren eine negative Zahl mit einer positiven das Ergebnis wird also negativ sein. Minus 5 mal drei Fünftel hoch 6 ist ungefähr minus 23 Cent ergibt. Wie sieht es mit den anderen beiden Optionen aus, bei denen eine NEGATIVE BASIS potenziert wird? Um zu verstehen, wie negative Basen auf Exponenten reagieren, schauen wir uns ein anderes Beispiel an. Und zwar minus 5 hoch 2. Das ist minus 5 mal minus 5, also PLUS 25. Wenn wir minus 5 noch einmal mehr mit sich selbst multiplizieren, ist das 25 mal minus 5, also MINUS 125. Wenn wir das WIEDER mit minus 5 multiplizieren, bekommen wir ein positives Ergebnis. Und eine weitere Multiplikation würde eine negative Zahl ergeben. Erkennst du das Muster? Eine negative Basis mit einem GERADEN Exponenten ergibt ein POSITIVES Ergebnis. Eine negative Basis mit einem UNGERADEN Exponenten ergibt ein NEGATIVES Ergebnis. Das im Hinterkopf, was wäre DIR lieber: minus 5 Euro hoch NEUN oder minus 5 Euro hoch ACHT? Minus 5 hoch 9 ist eine negative Basis hoch einen ungeraden Exponenten. Das Ergebnis ist also negativ. Minus 1.953.125 Euro, um genau zu sein. Wie sieht es mit minus 5 hoch 8 aus? Das ist eine negative Basis hoch einen geraden Exponenten. Das Ergebnis ist also positiv. Von minus 5 zu plus 390.625 Euro? Das sieht doch ordentlich aus! Option 3 verwandelt Haukes und Knuts Schulden in ein Vermögen! Wir wiederholen: Die Exponentialschreibweise ist die Kurzform für eine wiederholte Multiplikation einer Zahl mit sich selbst. Die Zahl, die multipliziert wird, nennt man Basis. Die Anzahl, wie oft die Basis mit sich selbst multipliziert wird, nennt man Exponent. Wenn du mit Brüchen oder negativen Basen arbeitest, nutzt du Klammern, um Verwirrungen zu vermeiden. Und schlussendlich, nur für den Fall, dass dir ein sprechender Fisch über den Weg schwimmt: Eine negative Basis hoch einen ungeraden Exponenten ergibt eine negative Zahl. Und ein gerader Exponent ergibt eine positive Zahl. Hauke und Knut beschließen, kräftig Kasse zu machen und den Fisch freizulassen. Und ohne zu zögern, gibt er ihnen ihre Belohnung! Stinkereich? Wohl eher sinkend reich! Ha! Tja, da sind die beiden wohl echt auf den Hund den Fisch gekommen.
Exponentialschreibweise Übung
9'172
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'604
Lernvideos
35'611
Übungen
32'354
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal