70%

Black Friday-Angebot

Nur bis zum 01.12.2024

Jetzt 30 Tage lang kostenlos testen & dann 70 % sparen.

Nur bis zum 01.12.2024

Lernpakete anzeigen

Quadratische Gleichungen grafisch lösen – Überblick

Erfahre, wie du quadratische Gleichungen auch ohne Taschenrechner grafisch lösen kannst! Dieses Video zeigt dir zwei effektive Methoden, um die Lösungen einer Gleichung anhand ihrer Graphen zu ermitteln. Ob Parabeln oder Geraden, du lernst, wie du ihre Schnittpunkte findest und interpretierst. Interessiert? Finde heraus, wie viele Lösungen es gibt, und übe weiter mit unseren Arbeitsblättern!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Quadratische Gleichungen grafisch lösen – Überblick

Wie lautet der allgemeine Funktionsterm einer Funktion dritten Grades?

1/5
Bereit für eine echte Prüfung?

Das Quadratische Gleichungen Graphisch Lösen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.6 / 78 Bewertungen
Die Autor*innen
Avatar
Team Digital
Quadratische Gleichungen grafisch lösen – Überblick
lernst du in der Sekundarstufe 3. Klasse - 4. Klasse

Grundlagen zum Thema Quadratische Gleichungen grafisch lösen – Überblick

Einführung: Was tun ohne Taschenrechner?

Sicherlich weißt du, dass man quadratische Gleichungen rechnerisch lösen kann. Aber was können wir tun, wenn wir keinen Taschenrechner zur Verfügung haben? Ganz einfach: Dann können wir grafische Lösungsverfahren für quadratische Gleichungen anwenden.

Quadratische Gleichungen

Wir betrachten als Beispiel diese quadratische Gleichung:

$2 \cdot x^{2} +x = 3 \cdot x + 1,5$

Im Folgenden lernen wir zwei Methoden kennen, mit denen wir die Lösungen der Gleichung grafisch bestimmen können.

Quadratische Gleichungen grafisch lösen – Methode 1

Beispiel:

Bei der ersten Methode stellen wir unsere Gleichung zunächst so um, dass auf einer Seite der Gleichung eine Null steht. Dazu subtrahieren wir zuerst auf beiden Seiten der Gleichung $3x$. Anschließend subtrahieren wir $1,5$ und erhalten somit:

$2 \cdot x^{2} -2\cdot x -1,5=0$

Wir können diese Gleichung lösen, indem wir die Nullstellen der Funktion $f(x) = 2x^{2}-2x-1,5$ bestimmen. Um die Nullstellen dieser Funktion zeichnerisch zu ermitteln, erstellen wir eine Wertetabelle:

$x$ $-1$ $0$ $1$ $2$
$y$ $2,5$ $-1,5$ $-1,5$ $2,5$

Mithilfe dieser Wertetabelle können wir die berechneten Wertepaare in ein Koordinatensystem eintragen und die Parabel zeichnen:

Nullstellen einer Parabel

Unserem Graphen können wir die beiden Nullstellen $-0,5$ und $1,5$ entnehmen. Die Lösung der ursprünglichen Gleichung lautet:

$\mathbb{L} = \lbrace -0,5; 1,5 \rbrace$

Mögliche Fälle beim grafischen Lösungsverfahren – Methode 1:

  • Hat die Parabel zwei Nullstellen, so hat die Gleichung zwei Lösungen.
  • Hat die Parabel eine Nullstelle, so hat die Gleichung eine Lösung.
  • Hat die Parabel keine Nullstelle, so hat die Gleichung keine Lösung.

Quadratische Gleichungen grafisch lösen – Methode 2

Beispiel: Wir können quadratische Gleichungen auch zeichnerisch lösen, indem wir die Gleichung so umformen, dass $x^{2}$ allein auf einer Seite der Gleichung steht. Dazu subtrahieren wir zuerst auf beiden Seiten der Gleichung $x$ und dividieren dann durch $2$. Somit erhalten wir:

$x^{2}=x+0,75$

Die grafische Lösung dieser Gleichung sind die Schnittpunkte der beiden Funktionen $f(x)=x^{2}$ und $g(x)=x+0,75$.

Der Graph der Funktion $f(x)=x^{2}$ ist die Normalparabel. Sie hat ihren Scheitelpunkt im Koordinatenursprung. Wir können sie mit einer Parabelschablone zeichnen. Der Graph der linearen Funktion $g(x)$ ist eine Gerade mit der Steigung $1$ und dem $y$-Achsenabschnitt $0,75$.

schnittpunkte parabel gerade

Wenn wir die Normalparabel und die Gerade gezeichnet haben, können wir die $x$-Werte ihrer Schnittpunkte ablesen. Sie lauten: $-0,5$ und $1,5$.

Dies sind die Lösungen der ursprünglichen Gleichung:

$\mathbb{L} = \lbrace -0,5; 1,5 \rbrace$

Mögliche Fälle beim grafischen Lösungsverfahren – Methode 2:

  • Schneiden sich die Parabel und die Gerade in zwei Punkten, so hat die Gleichung zwei Lösungen.
  • Schneiden sich die Parabel und die Gerade in einem Punkt, so hat die Gleichung eine Lösung.
  • Schneiden sich die Parabel und die Gerade gar nicht, so hat die Gleichung keine Lösung .

Zusammenfassung: quadratische Gleichungen grafisch lösen

In diesem Video zum grafischen Lösungsverfahren quadratischer Gleichungen wird das grafische Lösen quadratischer Gleichungen einfach erklärt. Dabei werden an einem Beispiel zwei mögliche Methoden erläutert, mit denen man eine quadratische Gleichung zeichnerisch lösen kann. Außerdem wird jeweils zusammengefasst, woran man beim grafischen Lösen erkennt, wie viele Lösungen die Gleichung hat.

Wenn du mithilfe weiterer Aufgaben und Übungen quadratische Gleichungen selbst grafisch lösen möchtest, findest du hier bei sofatutor ein Arbeitsblatt zum grafischen Lösen von quadratischen Gleichungen.

Teste dein Wissen zum Thema Quadratische Gleichungen Graphisch Lösen!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Quadratische Gleichungen grafisch lösen – Überblick

Hast du dich schon mal gefragt, wie man solche Gleichungen lösen konnte bevor es Taschenrechner gab? Selbst Leander, der Neanderthaler, hat alles, was man dazu braucht. Denn er überlegt sich jetzt, wie man quadratische Gleichungen graphisch löst. Um eine solche Gleichung zeichnerisch zu lösen, können wir zwei Methoden anwenden. Bei der ersten Methode stellen wir unsere Gleichung zunächst so um, dass auf einer Seite der Gleichung eine Null steht. Wenn wir die Nullstellen einer quadratischen Funktion bestimmen wollen, müssen wir genau so eine Gleichung lösen! Also bestimmen wir doch einfach zeichnerisch die Nullstellen dieser quadratischen Funktion. Dafür erstellen wir zuerst die Wertetabelle, und zeichnen dann den dazugehörigen Funktionsgraphen. Für die Wertetabelle setzen wir die x-Werte -1, 0, 1 und 2 in unsere Funktionsgleichung ein und berechnen die zugehörigen Funktionswerte f(x). Die lauten 2,5, -1,5, -1,5 und 2,5. Mithilfe unserer Wertetabelle können wir nun die berechneten Wertepaare in ein Koordinatensystem eintragen und unseren Funktionsgraphen zeichnen. Unserem Graphen können wir die beiden Nullstellen -0,5 und 1,5 entnehmen. Und damit haben wir unsere ursprüngliche Gleichung gelöst! Ihre Lösungsmenge besteht aus den beiden Nullstellen. Aber was passiert, wenn die resultierende Parabel gar keine Nullstellen hat? In so einem Fall, hat die entsprechende Gleichung eben keine Lösung. Denn merke dir: eine quadratische Gleichung kann keine, eine oder zwei Lösungen besitzen. Die zweite Methode eine quadratische Gleichung zeichnerisch zu lösen, besteht darin, die Gleichung so umzuformen, dass das x2 alleine auf einer Seite der Gleichung steht. Dazu isolieren wir zuerst 2x2 und teilen dann auf beiden Seiten durch 2. Wie können wir das in ein graphisches Problem übersetzen? Durch Gleichsetzen bestimmst du den Schnittpunkt der beiden Funktionen. f(x) = x2 und g(x) = x + 0,75. Die Funktion f(x) ist quadratisch, und g(x) ist eine lineare Funktion. Wir zeichnen die Graphen dieser beiden Funktionen in ein gemeinsames Koordinatensystem. Der Graph der Funktion f(x) = x2 ist die Normalparabel. Die hat ihren Scheitelpunkt im Koordinatenursprung, und du kannst sie mit einer Parabelschablone zeichnen – wenn du eine hast. Der Graph der linearen Funktion g(x)ist eine Gerade mit der Steigung 1 und dem y-Achsenabschnitt 0,75. Wenn wir beide Graphen gezeichnet haben, können wir die x-Werte ihrer Schnittpunkte ablesen. Sie lauten: -0,5 und 1,5 und entsprechen den Lösungen unserer quadratischen Gleichung. Aber was wäre, wenn die beiden Graphen sich nicht schneiden würden? Wie bei der ersten Methode hätten wir dann den Fall, dass unsere quadratische Gleichung keine Lösung besitzt. Und natürlich könnten die beiden Graphen sich auch in nur einem Punkt schneiden, der wäre dann auch die einzige Lösung der Gleichung. Zum Lösen einer quadratischen Gleichung haben wir zwei graphische Verfahren benutzt. Lass uns das Vorgehen bei diesen beiden Methoden kurz zusammenfassen. Bei der ersten Methode, formst du die quadratische Gleichung so um, dass auf einer Seite der Gleichung eine 0 steht. Was auf der anderen Seite steht, kannst du als quadratische Funktion auffassen. Für die zeichnest du dann den Funktionsgraphen, am besten mit Hilfe einer Wertetabelle. Jetzt musst du nur noch die Nullstellen ablesen: sie sind die Lösungen der quadratischen Gleichung. Bei der zweiten Methode formst du die quadratische Gleichung so um, dass auf einer Seite der Gleichung x2 steht. Das entspricht der Normalparabel. Auf der anderen Seite der Gleichung bleibt dann ein Ausdruck stehen, den du als lineare Funktion verwenden kannst. Nun zeichnest du in ein gemeinsames Koordinatensystem die Normalparabel und den Graphen dieser linearen Funktion. Abschließend liest du die x-Werte der Schnittpunkte beider Graphen ab: die sind wieder die Lösungen der quadratischen Gleichung. Dieses schlaue Verfahren muss Leander unbedingt an seine Nachfahren weitergeben! In diesen Felsen eingemeißelt wird es für immer lesbar sein. Naja, dann werden seine Nachfahren wohl selber auf diese schlaue Idee kommen müssen.

6 Kommentare
  1. Tolle Videos Team Digital. ich hab es verstanden

    Von Spidey_editz200, vor mehr als 2 Jahren
  2. Ich habs sehr eiinfach verstanden

    Von Dhathri S., vor mehr als 3 Jahren
  3. Echt jetzt ????????
    Wie einfach ist es??
    Boar ej TOLLL Mann

    Von Dhathri S., vor mehr als 3 Jahren
  4. Echt gutes Video! Richtig gut und vor allem anschaulich erklärt!

    Von Dörte v., vor mehr als 4 Jahren
  5. Tolles Video

    Von Mercedes R., vor etwa 5 Jahren
Mehr Kommentare

Quadratische Gleichungen grafisch lösen – Überblick Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Quadratische Gleichungen grafisch lösen – Überblick kannst du es wiederholen und üben.
  • Beschreibe das Vorgehen beim graphischen Lösen einer quadratischen Gleichung.

    Tipps

    Um eine Wertetabelle zu erstellen, setzt man zum Beispiel die $x$-Werte $-1,0,1$ und $2$ in die Funktionsgleichung der jeweiligen Funktion ein.

    Schneidet der Graph einer quadratischen Funktion die $x$-Achse nicht, so besitzt die Funktion keine Nullstellen.

    Lösung

    Um eine quadratische Gleichung graphisch zu lösen, stellt man die Gleichung so um, dass auf einer Seite null steht. Die entstandene Gleichung kennt man von der Nullstellenbestimmung einer quadratischen Funktion.

    Für die Gleichung $2x^2+x=3x+1,5$ bedeutet das zum Beispiel $2x^2 +x-3x-1 =0$ bzw. vereinfacht $2x^2-2x-1,5 =0$.

    Der Term $2x^2-2x-1,5$ kann nun als quadratische Funktion der Form $f(x)=2x^2-2x-1,5$ aufgefasst werden.

    Um den Graph dieser Funktion zu zeichnen, erstellt man als Nächstes eine Wertetabelle. Dafür können wir zum Beispiel die $x$-Werte $-1,0,1$ und $2$ in die Funktionsgleichung einsetzen.

    $\begin{array}{l|c|c|c|c} x & -1& 0& 1 & 2 \\ \hline f(x) & 2,5 & -1,5 & -1,5 & 2,5\\ \end{array}$

    Nun können wir die Punkte in ein Koordinatensystem eintragen und den Graphen der Funktion, also in diesem Fall $f(x)=2x^2-2x-1,5$, zeichnen. Die Nullstellen lassen sich als Schnittpunkte mit der $x$-Achse ablesen. Hier sind das die Nullstellen $-0,5$ und $1,5$.

  • Bestimme graphisch die Lösung der quadratischen Gleichung.

    Tipps

    In der Gleichung $2x^2+2x=4$ kann man $x^2$ isolieren, indem man zunächst $2x$ auf beiden Seiten abzieht und $2x^2=4-2x$ erhält.
    Teilt man dann noch durch $2$, so erhält man $x^2=2-x$.

    Eine lineare Gleichung der Form $y=x+0,75$ hat den $y$-Achsenabschnitt bei $0,75$.

    Lösung

    Wir wollen die quadratische Gleichung $2x^2+x=3x+1,5$ graphisch lösen.

    Dafür wollen wir die Gleichung so umstellen, dass $2x^2$ auf einer Seite isoliert steht. Dazu subtrahieren wir zunächst $x$ auf beiden Seiten und erhalten $2x^2=2x+1,5$.

    Um auf der linken Seite $x^2$ zu erhalten, teilen wir beide Seiten durch $2$ und erhalten $x^2=x+0,75$.

    Nun können wir die linke Seite der Gleichung als quadratische Funktion der Form $f(x)=x^2$, also als Gleichung der Normalparabel, auffassen. Die rechte Seite der Gleichung kann als lineare Funktion der Form $g(x)=x+0,75$ aufgefasst werden.

    Die Graph zu $f$ ist die Normalparabel und damit der schwarze Graph. Der Graph der linearen Funktion $g$ hat den $y$-Achsenabschnitt $0,75$. Daher kann es sich hierbei nur um den roten Graphen handeln.

    Im obigen Bild können wir nun die Schnittpunkte der Normalparabel und der roten Geraden ablesen. Diese Schnittpunkte sind die Lösung der quadratischen Gleichung und sind gegeben durch $x_1 =-0,5$ und $x_2=1,5$.

  • Ermittle die Lösungen der gegebenen quadratischen Gleichungen.

    Tipps

    Forme die Gleichung zunächst so um, dass $0$ auf einer Seite der Gleichung steht. Die andere Seite der Gleichung kann dann als quadratische Funktion identifiziert werden.

    Ausgehend von der quadratischen Funktion, kannst du eine Wertetabelle erstellen, anschließend den Graphen zeichnen und die Nullstellen ablesen.

    Lösung

    Um die quadratischen Gleichungen graphisch zu lösen, gehen wir nach folgendem Schema vor:

    • Umstellen der Gleichung, sodass $0$ auf einer Seite der Gleichung steht
    • Auffassen der anderen Seite der Gleichung als quadratische Funktion
    Erstellung einer Wertetabelle für die Werte $-2,-1,0,1,2$ für die quadratische Funktion
    • Zeichnen des Graphen der Funktion anhand der Wertetabelle
    • Ablesen der Nullstellen des Graphen, da diese die Lösungen der ursprünglichen Gleichung bilden
    Zur Gleichung $x^2+3x=1+3x$

    Wir subtrahieren $3x$ und $1$ auf beiden Seiten und erhalten die Gleichung $x^2-1=0$.
    Die linke Seite lässt sich als quadratische Funktion der Form $f(x)=x^2-1$ auffassen.
    Wir erstellen eine Wertetabelle:

    $\begin{array}{l|c|c|c|c|c} x & -2& -1& 0& 1 & 2 \\ \hline f(x) & 3 & 0 & -1 & 0 & 3 \end{array}$

    Wenn wir den Graphen zu der Wertetabelle zeichnen, stellen wir fest, dass die Nullstellen der Funktion und damit die Lösungen der anfänglichen Gleichung gegeben sind durch $-1$ und $1$.

    Zur Gleichung $2x+1=-x^2+1$

    Wir subtrahieren $1$ auf beiden Seiten, addieren $x^2$ und erhalten die Gleichung $x^2+2x=0$.
    Die linke Seite lässt sich als quadratische Funktion der Form $f(x)=x^2+2x$ auffassen.
    Wir erstellen eine Wertetabelle:

    $\begin{array}{l|c|c|c|c|c} x & -2& -1& 0& 1 & 2 \\ \hline f(x) & 0 & -1 & 0 & 3 & 8 \end{array}$

    Wenn wir den Graphen zu der Wertetabelle zeichnen, stellen wir fest, dass die Nullstellen der Funktion und damit die Lösungen der anfänglichen Gleichung gegeben sind durch $-2$ und $0$.

    Zur Gleichung $2x^2-2x+1=x^2+0,5x$

    Wir subtrahieren $x^2$ und $0,5x$ auf beiden Seiten und erhalten die Gleichung $x^2-2,5x+1=0$.
    Die linke Seite lässt sich als quadratische Funktion der Form $f(x)= x^2-2,5x+1$ auffassen.
    Wir erstellen eine Wertetabelle:

    $\begin{array}{l|c|c|c|c|c} x & -2& -1& 0& 1 & 2 \\ \hline f(x) & 10 & 4,5 & 1 & -0,5 & 0 \end{array}$

    Wenn wir den Graphen zu der Wertetabelle zeichnen, stellen wir fest, dass die Nullstellen der Funktion und damit die Lösungen der anfänglichen Gleichung gegeben sind durch $0,5$ und $2$.

    Zur Gleichung $-x+2x^2=-2x+3$

    Wir subtrahieren $3$ auf beiden Seiten, addieren $2x$ und erhalten die Gleichung $2x^2+x-3=0$.
    Die linke Seite lässt sich als quadratische Funktion der Form $f(x)= 2x^2+x-3$ auffassen.
    Wir erstellen eine Wertetabelle:

    $\begin{array}{l|c|c|c|c|c} x & -2& -1& 0& 1 & 2 \\ \hline f(x) & 3 & -2 & -3 & 0 & 7 \end{array}$

    Wenn wir den Graphen zu der Wertetabelle zeichnen, stellen wir fest, dass die Nullstellen der Funktion und damit die Lösungen der anfänglichen Gleichung gegeben sind durch $-1,5$ und $1$.

  • Bestimme die graphische Lösung der gegebenen quadratischen Gleichungen.

    Tipps

    Löse die quadratischen Gleichungen, indem du $x^2$ auf einer Seite der Gleichung isolierst. Dann kannst du beide Seiten der Gleichungen als Funktionen auffassen, deren Graphen zum einen eine Normalparabel und zum anderen eine Gerade sind.

    Eine Gerade der Form $y=4x+2$ hat den $y$-Achsenabschnitt $2$ und die positive Steigung $4$.

    Lösung

    Zur Gleichung $x^2+x=3x+1$

    Um die Gleichung $x^2+x=3x+1$ nach $x^2$ umzustellen, subtrahieren wir $x$ auf beiden Seiten der Gleichung und erhalten $x^2=2x+1$.

    Wir können die Seiten als die quadratische Funktion $f(x)=x^2$ und $g(x)=2x+1$ auffassen.
    Dabei ist der Graph von $f$ die Normalparabel und der Graph von $g$ ist gegeben durch eine Gerade mit $y$-Achsenabschnitt $1$ und Steigung $2$. Daher kommen nur die grünen Graphen infrage.

    Zur Gleichung $0,5x^2=-1,5x+2-0,5x^2$

    Um die Gleichung $0,5x^2=-1,5x+2-0,5x^2$ nach $x^2$ umzustellen, addieren wir $0,5x^2$ auf beiden Seiten der Gleichung und erhalten $x^2=-1,5x+2$.

    Wir können die Seiten als die quadratische Funktion $f(x)=x^2$ und $g(x)=-1,5x+2$ auffassen.
    Dabei ist der Graph von $f$ die Normalparabel und der Graph von $g$ ist gegeben durch eine Gerade mit $y$-Achsenabschnitt $2$ und Steigung $-1,5$. Daher kommen nur die orangen Graphen infrage.

    Zur Gleichung $x^2-4+3x=-4-4x$

    Um die Gleichung $x^2-4+3x=-4-4x$ umzustellen, addieren wir $4$ auf beiden Seiten der Gleichung und erhalten $x^2+3x=-4x$. Zusätzlich subtrahieren wir $3x$ auf beiden Seiten der Gleichung und erhalten $x^2=-7x$.

    Wir können die Seiten als die quadratische Funktion $f(x)=x^2$ und $g(x)=-7x$ auffassen.
    Dabei ist der Graph von $f$ die Normalparabel und der Graph von $g$ ist gegeben durch eine Gerade mit $y$-Achsenabschnitt $0$ und Steigung $-7$. Sie verläuft also durch den Ursprung und ist sehr steil. Daher kommen nur die blauen Graphen infrage.

    Zur Gleichung $3x^2+2-x=0,5x-1$

    Um die Gleichung $3x^2+2-x=0,5x-1$ umzustellen, addieren wir $x$ auf beiden Seiten der Gleichung und erhalten $3x^2+2=1,5x-1$. Als Nächstes subtrahieren wir $2$ auf beiden Seiten der Gleichung und erhalten $3x^2=1,5x-3$. Nun müssen wir nur noch durch $3$ teilen, um $x^2$ zu isolieren: $x^2=0,5x-1$.

    Wir können die Seiten als die quadratische Funktion $f(x)=x^2$ und $g(x)=0,5x-1$ auffassen.
    Dabei ist der Graph von $f$ die Normalparabel und der Graph von $g$ ist gegeben durch eine Gerade mit $y$-Achsenabschnitt $-1$ und Steigung $0,5$. Daher kommen nur die gelben Graphen infrage.

  • Gib die Nullstellen der abgebildeten quadratischen Funktionen an.

    Tipps

    Eine Nullstelle ist der $x$-Wert des Schnittpunktes eines Graphen mit der $x$-Achse.

    Der grüne Graph besitzt nur eine Nullstelle.

    Lösung

    Die Nullstellen sind gegeben durch die $x$-Werte der Schnittpunkte der Graphen mit der $x$-Achse:

    Der blaue Graph schneidet die $x$-Achse in den Punkten $(-2,5|0)$ und $(-0,5|0)$. Daher sind die Nullstellen gegeben durch $-2,5$ und $-0,5$.

    Der gelbe Graph schneidet die $x$-Achse in den Punkten $(-1|0)$ und $(2|0)$. Daher sind die Nullstellen gegeben durch $-1$ und $2$.

    Der grüne Graph schneidet die $x$-Achse ausschließlich im Punkt $(1|0)$. Daher ist die einzige Nullstellen gegeben durch $1$.

  • Ermittle die Lösung der gegebenen quadratischen Gleichung in Abhängigkeit vom Parameter $a$.

    Tipps

    Wenn du die Normalparabel und die Gerade gezeichnet hast, bedeuten zwei Schnittpunkte, dass es zwei Lösungen gibt, und ein Schnittpunkt bedeutet, dass es eine Lösung gibt. Schneidet die Gerade die Normalparabel nicht, so gibt es keine Lösung für die quadratische Gleichung.

    Lösung

    Wir gehen nach folgendem Schema vor:

    1. Ersetzen des Parameters $a$ durch $0,4$ oder $8$
    2. Isolierung von $x^2$ auf einer Seite der Gleichung
    3. Identifizierung der Funktionen $f(x)=x^2$ und einer linearen Funktion $g(x)$
    4. Zeichnen der beiden Funktionen in einem Koordinatensystem
    5. Ablesen der Anzahl der Lösungen

    Zu $a=0$

    Die quadratische Gleichung wird zu $2x^2-x=x^2+3x$. Subtrahieren wir $x^2$ auf beiden Seiten und addieren $x$, so erhalten wir $x^2=4x$.

    Wir können die linke Seite als quadratische Funktion der Form $f(x)=x^2$ und die rechte Seite als lineare Funktion der Form $g(x)=4x$ identifizieren.

    Der Graph der Funktion $f$ ist die Normalparabel. Der Graph der Funktion $g$ ist eine Gerade mit $y$-Achsenabschnitt $0$ und Steigung $4$. Sie schneidet die Parabel $2$-mal. Daher hat die ursprüngliche quadratische Gleichung für $a=0$ zwei Lösungen.

    Zu $a=4$

    Die quadratische Gleichung wird zu $2x^2-x+8=x^2+3x+4$. Subtrahieren wir $x^2$ und $8$ auf beiden Seiten und addieren $x$, so erhalten wir $x^2=4x-4$.

    Wir können die linke Seite als quadratische Funktion der Form $f(x)=x^2$ und die rechte Seite als lineare Funktion der Form $g(x)=4x-4$ identifizieren.

    Der Graph der Funktion $f$ ist die Normalparabel. Der Graph der Funktion $g$ ist eine Gerade mit $y$-Achsenabschnitt $-4$ und Steigung $4$. Sie schneidet die Parabel genau $1$-mal. Daher hat die ursprüngliche quadratische Gleichung für $a=4$ genau eine Lösung.

    Zu $a=8$

    Die quadratische Gleichung wird zu $2x^2-x+16=x^2+3x+8$. Subtrahieren wir $x^2$ und $16$ auf beiden Seiten und addieren $x$, so erhalten wir $x^2=4x-8$.

    Wir können die linke Seite als quadratische Funktion der Form $f(x)=x^2$ und die rechte Seite als lineare Funktion der Form $g(x)=4x-8$ identifizieren.

    Der Graph der Funktion $f$ ist die Normalparabel. Der Graph der Funktion $g$ ist eine Gerade mit $y$-Achsenabschnitt $-8$ und Steigung $4$. Sie schneidet die Parabel nicht. Daher hat die ursprüngliche quadratische Gleichung für $a=8$ keine Lösung.

30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'883

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'388

Lernvideos

36'070

Übungen

32'618

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden