Quadratische Funktionen – Übersicht

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Quadratische Funktionen – Übersicht
Nach dem Schauen dieses Videos wirst du einen Überblick über die Begriffe des Themenkomplexes “quadratische Funktionen” haben.
Zunächst lernst du zwei grundlegende Eigenschaften der Parabeln kennen (Scheitelpunkt und Nullstellen). Anschließend werden wir durch Verschieben, Strecken und Stauchen der Normalparabel andere Parabeln erzeugen. Abschließend lernst du, wie die Funktionsgleichungen von quadratischen Funktionen aussehen können.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie quadratische Funktion, Parabel, Normalparabel, Scheitelpunkt, Nullstelle, Verschiebung, Streckung, Stauchung, Normalform, allgemeine Form, Scheitelpunktform und faktorisierte Form.
Bevor du dieses Video schaust, solltest du bereits das Lösen von Gleichungen und die Anwendung binomischer Formeln beherrschen.
Nach diesem Video wirst du darauf vorbereitet sein, tiefer in das Themengebiet “quadratischer Funktionen” einzutauchen.
Transkript Quadratische Funktionen – Übersicht
Heute geht es um Parabeln. Nein, nicht um die Ringparabel von Nathan dem Weisen, sondern um die Graphen von „quadratischen Funktionen“. Bei diesem Thema prasselt ein heilloses Durcheinander an Begriffen auf dich ein. Aber das ist zum Glück kein Drama und wir versuchen einmal, etwas Ordnung in dieses Chaos zu bringen. In quadratischen Funktionen steckt, wie der Name schon sagt, ein Quadrat drin. Nein, nicht so ein Quadrat. So eins! Eine Funktion mit der Potenz „x hoch zwei“, beziehungsweise „x Quadrat“ wird quadratische Funktion genannt. Ihr Funktionsgraph heißt Parabel. Parabeln können ganz unterschiedlich aussehen. Sie sind beispielsweise nach oben oder nach unten geöffnet. Der höchste beziehungsweise der niedrigste Punkt wird Scheitelpunkt genannt. Jede Parabel hat also genau einen Scheitelpunkt. Dieser Punkt wird häufig mit S bezeichnet. Eine ganz besondere quadratische Funktion ist die Normalparabel. Ihre Funktionsgleichung lautet „f von x“ gleich „x Quadrat“. Sie hat ihren Scheitelpunkt im Koordinatenursprung, also in „null, null“. Aus dieser Funktion gehen alle anderen Parabeln durch Verschiebung, Streckung oder Stauchung hervor. Schauen wir uns zunächst an, was passiert, wenn wir die Normalparabel im Koordinatensystem verschieben. Wenn wir uns diese drei nach oben geöffneten Parabeln anschauen, sehen wir, dass die Funktionsgraphen die x-Achse gar nicht, einmal oder zweimal schneiden. Diese Schnittstellen werden auch Nullstellen genannt. Genau wie die nach oben geöffneten Parabeln haben auch die nach unten geöffneten Parabeln keine, eine oder zwei Nullstellen. Durch Verschiebung kann sich also die Anzahl der Nullstellen verändern. Wie können wir denn noch an unserer Normalparabel rumdoktern? Parabeln können auch breiter oder schmaler als die Normalparabel sein. Solche Parabeln entstehen durch Stauchung oder Streckung der Normalparabel. Breite Parabeln sind gestaucht und schmale Parabeln gestreckt. Ob eine Parabel gestreckt, gestaucht oder verschoben ist, hängt von ihrer Funktionsgleichung ab. Dabei können quadratische Funktionsgleichungen in verschiedenen Formen auftreten. Bei der Normalform und der allgemeinen Form ist es offensichtlich, dass es sich um quadratische Funktionsgleichungen handelt, denn hier ist das „x Quadrat“ auf den ersten Blick zu erkennen. Die Parabel der Normalform ist dabei, wie der Name schon sagt, eine verschobene Normalparabel. Bei der Normalform steht vor dem „x Quadrat“ nur der Vorfaktor eins, der bei der Multiplikation ja auch weggelassen werden kann, während bei der allgemeinen Form jede andere Zahl als Vorfaktor stehen kann. Bei diesem Beispiel ist es im ersten Moment vielleicht nicht ersichtlich, aber auch diese Funktionsgleichung ist eine quadratische Funktionsgleichung. Diese Form wird Scheitelpunktform genannt. Wenn wir diese Klammer mit Hilfe der ersten binomischen Formel auflösen, erhalten wir eine Funktionsgleichung in der allgemeinen Form. In der Scheitelpunktform ist also kein explizites „x Quadrat“ zu erkennen, aber zumindest ein Quadrat. Danach sucht man in dieser Funktionsgleichung vergeblich. Aber auch hier handelt es sich um eine quadratische Funktionsgleichung. Das erkennen wir, wenn wir die Faktoren ausmultiplizieren. Diese Form wird deshalb faktorisierte Form genannt. Du siehst also, dass du für das Themengebiet zu quadratischen Funktionen das Lösen von Gleichungen und binomischen Formeln beherrschen solltest. Aber mit Sicherheit kannst du nun die vielen neuen Begriffe gut einordnen. Damit haben wir auch einen Beitrag zur Aufklärung geleistet und konnten etwas Licht ins Dunkel der Parabeln bringen, und gemeinsam ein bisschen weiser werden.
Quadratische Funktionen – Übersicht Übung
-
Gib an, ob die Aussagen zu quadratischen Funktionen richtig sind.
-
Beschreibe die Parabel.
-
Entscheide, in welcher Form die Funktionsgleichung der quadratischen Funktion gegeben ist.
-
Ermittle die Anzahl der Nullstellen, die der Graph der Parabel nach den beschriebenen Änderungen hat.
-
Definiere die gegebenen Fachbegriffe zu quadratischen Funktionen.
-
Überprüfe die Aussagen zu den dargestellten Funktionsgraphen.
9'182
sofaheld-Level
6'600
vorgefertigte
Vokabeln
7'643
Lernvideos
35'607
Übungen
32'360
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Schriftliche Division – Übungen
- Meter
Das beste Video zu diesem Thema 😍