Anwendung des Kreuzprodukts
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Anwendung des Kreuzprodukts
Hallo! Parallelogramm, Spat und eine Pyramide mit dreieckiger Grundfläche. Diese Figuren kennst du bereits von früher. Du hast mit dem Satz des Pythagoras und vielen anderen Rechnungen und Formeln den Flächeninhalt von Flächen, den Oberlächeninhalt und das Volumen von Körper berechnet. Jetzt lernst du, wie du mit Hilfe von Vektoren das Volumen bzw. den Flächeninhalt verschiedener Figuren mit Hilfe des Vektorprodukts leichter und vor allem schneller berechnen kannst. Ich möchte mit dir zusamen den Flächeninhalt eines Parallellogramms berechnen und dir zeigen, wie leicht er zu bestimmen ist. Die Formel für das Volumen eines Spats und einer Pyramide mit dreiecker Grundfläche sind dann auch zu schaffen! Viel Spaß und Erfolg beim Lernen!
Transkript Anwendung des Kreuzprodukts
Hallo. Ich bin Giuliano und ich möchte Dir heute erklären, wo man das Vektorprodukt anwendet. Du solltest dazu wissen, wie man das Vektorprodukt bildet und was da Skalarprodukt ist. Hier siehst Du ein Parallelogramm in einem dreidimensionalen Koordinatensystem. Und unsere Aufgabe ist es jetzt, den Flächeninhalt dieses Parallelogramms zu berechnen. Du hast die Punkte A, B, C, D dieses Parallelogramms und zwei Vektoren a und b, die dieses Parallelogramm aufspannen. Der Vektor a ist hierbei der Verbindungsvektor zwischen A und B und der Vektor b der Verbindungsvektor zwischen A und D. Du kennst bereits folgende Formel: Also der Flächeninhalt von diesem Parallelogramm, ich kürze das mit AP ab, kann man berechnen, indem man den Vektor a² mal dem Vektor b² minus (a * b)² und das Ganze in der Wurzel. AP = √(a² * b² - (a * b)²). Wenn ich hier von „mal“ spreche, spreche ich natürlich vom sogenannte „Skalarprodukt“. Jetzt kann man aber auch den Flächeninhalt wie folgt berechnen. AP gleich Vektorprodukt von a und b und das Ganze im Betrag. AP = |a x b|. Den Beweis dafür werde ich hier nicht vorführen, warum diese Formel, genauso wie diese Formel, gelten. Jetzt möchte ich mit Dir zusammen einmal diese untere Formel anwenden. Dafür nehmen wir folgendes Beispiel: Die Vektoren a und b sind meistens nicht vorgegeben, sondern die Punkte im Raum oder, ja, quasi in diesem Koordinatensystem. Das heißt, wir nehmen als Koordinaten folgende, ja, folgendes Beispiel: Also der Punkt A hat die Koordinaten zwei, minus vier und drei. A(2|-4|3). Der Punkt B hat die Koordinaten vier, minus zwei und vier. B(4|-2|4). Der Punkt C hat die Koordinaten minus vier, eins und fünf. C(-4|1|5). Und der Punkt D hat die Koordinaten minus sechs, minus eins und vier. D(-6|-1|4) Jetzt wenden wir direkt diese Formel an. Also der Flächeninhalt von diesem Parallelogramm ist Vektor a mal Vektor b. Wie ich es gerade schon erwähnt habe bedeutet das, ich muss den Verbindungsvektor von A und B im Vektorprodukt mit dem Verbindungsvektor von A, D im Betrag setzen. AP = |AB x AD| Alternativ, wenn Du auf den Punkt C guckst, kannst Du auch zwei andere Vektoren, die das Parallelogramm aufspannen für, in diese Formel einsetzen. Und zwar einmal den Vektor C, D und einmal den Vektor, oder Verbindungsvektor C, B. Dann erhältst Du dieselbe Lösung. Das bedeutet jetzt, jetzt berechne ich erstmal diesen Verbindungsvektor: Koordinaten von B minus die Koordinaten von A: 4 - 2 = 2. -2 - (-4) = 2. 4 - 3 = 1. Im Vektorprodukt mit A, D: -6 - 2 = 8. -1 - (-4), also plus vier, = 3. 4 - 3 = 1. AP = |AB x AD| = | (-2|2|1) x (8|3|1). Jetzt benutze ich eine Merkregel, um das Vektorprodukt auszurechnen. Du kannst alternativ auch andere Regeln benutzen. Ich schreibe mir damit die Vektoren einmal untereinander auf. Also zwei, zwei, eins. Und jetzt nochmal, zwei, zwei, eins. Dann minus acht, drei, eins. Die schreibe ich also hier gegenüber. So, die oberste und unterste Zeile streiche ich durch und dann rechne ich hier über Kreuz. Das heißt, hier kommt folgender Vektor raus: Betrag von 2 * 1 - 1 * 3 = -1. 1 * (-8) - 2 * 1 = -10. Und 2 * 3 - 2 * (-8) = 6 + 16 = 22. AP = |(-1|-10|22)|. Jetzt muss ich den Betrag von diesem Vektor ausrechnen, das mache ich wie folgt: Indem ich die einzelnen Koordinaten quadriere, also minus eins zum Quadrat, minus zehn zum Quadrat und dann summiere plus 22 Quadrat und das Ganze in der Wurzel.AP = √( (-1)² + (-10)² + 22²). Da kommt dann √585 raus und das ist ungefähr 24,19. Ich schreibe hier FE hin, das bedeutet Flächeneinheiten, das heißt, wenn wir zum Beispiel diese Koordinaten hier in Zentimeter angegeben haben, würde der Flächeninhalt des Parallelogramms 24,19 cm² betragen, weil das eben eine Fläche ist. Jetzt möchte ich gerne Dir noch zwei weitere Anwendungen des Vektorprodukts in der Geometrie zeigen. Hier siehst Du einmal ein Spat im dreidimensionalen Koordinatensystem. Die Grundfläche, ein Parallelogramm, wird von den beiden Vektoren a und b aufgespannt. Zusätzlich gibt es noch einen dritten Vektor c, der, in dem Falle, in die Höhe geht. Dann kann man das Volumen dieses Spats wie folgt berechnen: Auch diese Formel hier werde ich nicht beweisen. Das Volumen des Spats ist der Betrag, vom sogenannten „Spatprodukt“. Das wird wie folgt gebildet a Vektorprodukt mit b und dann das Skalarprodukt mit c und das Ganze eben im Betrag. VSpat = | (a x b) * c |. Also das Innere des Betrags nennt man „Spatprodukt“. Jetzt gucken wir uns ein letztes Beispiel an. Hier siehst Du nochmal einen Spat. Wenn wir nun die Grundfläche, das Parallelogramm, entlang der Diagonalen genau durch zwei teilen, erhalten wir ein Prisma, mit dreieckiger Grundfläche. Jetzt fragst Du Dich: Prisma, Spat? Ein Spat ist auch ein Prisma. Das heißt, wir erhalten ein Prisma, mit dreieckiger Grundfläche. Das Volumen, dieses entstandenen Prismas ist genau die Hälfte des Volumens des Spats, klar, weil wir die Grundfläche und damit den kompletten Körper eben genau durch zwei geteilt haben. Wenn wir jetzt aus diesem Prisma, mit dreieckiger Grundfläche, noch eine Pyramide machen, gilt Folgendes: Jede Pyramide hat ein Drittel des Volumens des Prismas mit gleicher Grundfläche und derselben Höhe. Das bedeutet jetzt also insgesamt, dass das Volumen dieser entstandenen, dreiseitigen Pyramide, wie man das nennt, genau ein Sechstel des Volumens des Spats hat. Weil erstmal haben wir ja das Spat durch zwei geteilt, also die Hälfte des Volumens und dann haben wir noch die Pyramideneigenschaft ein Drittel, also insgesamt ein Sechstel des Volumen des Spats. Das heißt, das schreiben wir uns hier nochmal hin, also das Volumen der dreiseitigen Pyramide ist gleich ein Sechstel des Volumens des Spats. VDr.Py. = ⅙ VSpat. Jetzt möchte ich noch einmal alles zusammenfassen: Wir haben uns zu Beginn ein Parallelogramm im dreidimensionalen Koordinatensystem angesehen und zwei Formeln, ja, kurz angesprochen, wie man den Flächeninhalt dieses Parallelogramms berechnet. Dann habe ich mit Dir zusammen den Flächeninhalt des Parallelogramms mit diesen vier Punkten hier, mit hilfe des Vektorprodukts berechnet. Als zweites haben wir uns das Volumen eines Spats angesehen und als letztes das Volumen einer dreiseitigen Pyramide hergeleitet. Ich hoffe, dass Du das alles verstanden hast und Du Spaß an dem Video hattest. Ciao und bis zum nächsten Mal, dein Giuliano.
Anwendung des Kreuzprodukts Übung
-
Bestimme die Vektoren, deren Vektorprodukt für die Flächenberechnung des Parallelogramms berechnet werden muss.
TippsSchau dir die Skizze genau an.
Welche Bedeutung hat der Vektor $\vec a$ und welche der Vektor $\vec b$.
Der Ortsvektor eines Punktes $P(p_1|p_2|p_3)$ ist der Vektor $\vec p=\begin{pmatrix} p_1 \\ p_2\\ p_3 \end{pmatrix}$.
Der Verbindungsvektor zweier Punkte $P$ und $Q$ ist die Differenz vom Ortsvektor des Endpunktes und dem des Anfangspunktes:
$\vec{PQ}=\begin{pmatrix} q_1-p_1 \\ q_2-p_2\\ q_3-p_3 \end{pmatrix}$.
LösungZur Berechnung des Flächeninhaltes des durch die Punkte $A$, $B$, $C$ und $D$ gegebenen Parallelogramms benötigt man die beiden in der Skizze zu erkennenden Vektoren $\vec a$ sowie $\vec b$.
Es gilt
$\vec a=\vec{AD}=\vec{BC}=\vec d -\vec a=\begin{pmatrix} -8 \\ 3\\ 1 \end{pmatrix}$
sowie
$\vec b=\vec{AB}=\vec{DC}=\vec b -\vec a=\begin{pmatrix} 2 \\ 2\\ 1 \end{pmatrix}$.
-
Berechne den Flächeninhalt des Parallelogramms.
TippsDu kannst die folgende Merkregel zur Berechnung des Vektorproduktes verwenden:
Schreibe die Vektoren zweimal untereinander und streiche die erste und letzte Zeile:
$\begin{array}{c} \not{a_1}\\ a_2\\ a_3\\ a_1\\ a_2\\ \not{a_3} \end{array} \begin{array}{c} \times\\ \times\\ \times \end{array} \begin{array}{c} \not{b_1} \\ b_2\\ b_3\\ b_1\\ b_2\\ \not{b_3} \end{array}$
Nun kannst du jeweils über Kreuz multiplizieren und die Differenz der Produkte bilden.
Der Betrag, oder die Länge eines Vektors $\vec u$ ist wie folgt definiert:
$\left| \vec u \right|=\sqrt{u_1^2+u_2^2+u_3^2}$.
LösungEs gilt $\vec a=\begin{pmatrix} -8 \\ 3\\ 1 \end{pmatrix}$ und $\vec b=\begin{pmatrix} 2 \\ 2\\ 1 \end{pmatrix}$.
Die Formel zur Berechnung des Flächeninhaltes des Parallelogramms, welches von diesen beiden Vektoren aufgespannt wird, lautet:
$A_P=\left| \begin{pmatrix} 2 \\ 2\\ 1 \end{pmatrix}\times\begin{pmatrix} -8 \\ 3\\ 1 \end{pmatrix}\right|$.
Es muss also das Vektorprodukt der beiden Vektoren $\vec a$ und $\vec b$ gebildet werden.
Dafür kann man eine Merkregel verwenden:
- Schreibe die Vektoren jeweils zweimal untereinander,
- streiche die erste und letzte Zeile,
- multipliziere über Kreuz und subtrahiere die Produkte:
Von diesem Vektor muss die Länge berechnet werden:
$A_P=\left|\begin{pmatrix} -1 \\ -10\\ 22 \end{pmatrix}\right|=\sqrt{(-1)^2+(-10)^2+22^2}=\sqrt{585}\approx24,19\text{ [FE]}$.
-
Bestimme das Volumen des Spats.
Tipps- $\times$ steht für das Vektorprodukt: das Ergebnis ist ein Vektor und
- $\cdot$ steht für das Skalarprodukt: das Ergebnis ist eine Zahl.
Das Skalarprodukt zweier Vektoren $\vec u$ und $\vec v$ ist wie folgt definiert:
$\vec u\cdot \vec v=u_1\cdot v_1+u_2\cdot v_2+u_3\cdot v_3$.
Die erste Koordinate des Vektorproduktes berechnet sich wie folgt:
$-2\cdot 0-5\cdot 2$.
LösungDas Volumen eines Spats lässt sich mit dem Betrag des Spatprodukts der Vektoren berechnen, welche das Spat aufspannen.
Das Spatprodukt dreier Vektoren $\vec a$, $\vec b$ und $\vec c$ ist wie folgt definiert:
$\left(\vec a \times \vec b\right)\cdot \vec c$.
Die Rechnung ist in dem Bild zu sehen.
Zunächst muss das Vektorprodukt der beiden ersten Vektoren berechnet werden:
$\begin{pmatrix} 3\\ -2\\ 5 \end{pmatrix}\times\begin{pmatrix} 2\\ 2\\ 0 \end{pmatrix}=\begin{pmatrix} (-2)\cdot0-5\cdot2 \\ 5\cdot 2-3\cdot 0\\ 3\cdot2-(-2)\cdot 2 \end{pmatrix}=\begin{pmatrix} -10 \\ 10 \\ 10 \end{pmatrix}$.
Dieser Vektor wird nun mit dem dritten Vektor multipliziert. Bei dieser Multiplikation handelt es sich um das Skalarprodukt.
- $\times$ steht für das Vektorprodukt: das Ergebnis ist ein Vektor und
- $\cdot$ steht für das Skalarprodukt: das Ergebnis ist eine Zahl.
Nun muss noch der Betrag gebildet werden und das Volumen ist berechnet:
$V_{Spat}=10$.
-
Gib das Volumen der Pyramide an.
TippsDie drei Vektoren, welche du für die Berechnung des Spatproduktes benötigst, sind die Ortsvektoren der Schnittpunkte.
Beachte, dass
- $\times$ für das Vektorprodukt steht, das Ergebnis ist ein Vektor, und
- $\cdot$ für das Skalarprodukt, das Ergebnis ist eine Zahl.
Das Vektorprodukt ist wie folgt definiert:
$\begin{pmatrix} a_1 \\ a_2\\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2\\ b_3 \end{pmatrix}=\begin{pmatrix} a_2\cdot b_3-a_3\cdot b_2 \\ a_3\cdot b_1-a_1\cdot b_3 \\ a_1\cdot b_2-a_2\cdot b_1 \end{pmatrix}$.
Das Skalarprodukt ist wie folgt definiert:
$\vec a \cdot \vec b=a_1\cdot b_1+a_2\cdot b_2+a_3\cdot b_3$.
LösungDas Berechnen von Achsenschnittpunkten von Ebenen im Raum kommt häufig in Abituraufgaben vor. Wenn eine Ebene alle drei Koordinatenachsen schneidet, so kann man
- zum einen ein Schrägbild der Ebene zeichnen und
- zum anderen das Volumen der Dreieckspyramide berechnen, welche durch die drei Schnittpunkte und den Koordinatenursprung gegeben ist.
$V_{Dr.Pyr.}=\frac16\left|\left(\begin{pmatrix} 4\\ 0\\ 0 \end{pmatrix}\times\begin{pmatrix} 0\\ -3\\ 0 \end{pmatrix}\right)\cdot \begin{pmatrix} 0\\ 0\\ 6 \end{pmatrix}\right|=\frac16\left|\begin{pmatrix} 0\\ 0\\ -12 \end{pmatrix}\cdot\begin{pmatrix} 0\\ 0\\ 6 \end{pmatrix}\right|=\frac{72}6=12$.
-
Gib die Formeln zur Berechnung des Flächeninhaltes eines Parallelogramms sowie des Volumens eines Spats und einer Dreiseitigen Pyramide an.
TippsSchau dir an, wie welche Figur gebildet wird.
Eine dreiseitige Pyramide kannst du aus einem Spat gewinnen.
LösungDie Formel zur Berechnung des Flächeninhaltes eines Parallelogramms lautet:
$A_P=\left|\vec a \times \vec b\right|$.
Ein Spat ist ein schiefes vierseitiges Prisma mit einem Parallelogramm als Grundfläche. Das Volumen eines Spats wird über das sogenannte Spatprodukt berechnet:
$V_{Spat}=\left|\left(\vec a \times \vec b\right)\cdot \vec c\right|$.
- $\times$ steht für das Vektorprodukt und
- $\cdot$ für das Skalarprodukt.
$V_{Dr.Pyr}=\frac 16 V_{Spat}=\frac 16 \left|\left(\vec a \times \vec b\right)\cdot \vec c\right|$.
-
Berechne den Flächeninhalt des Dreiecks.
TippsWenn du noch einen Punkt zu dem Dreieck hinzufügst, erhältst du ein Parallelogramm.
Betrachte das Parallelogramm, welches von den Vektoren
- $\vec a=\vec{AB}$ sowie
- $\vec b=\vec{AC}$
Verwende die Formel zur Berechnung des Flächeninhaltes eines Parallelogramms:
$V_P=\left|\vec a\times \vec b\right|$.
Der Flächeninhalt des Dreiecks ist die Hälfte des Flächeninhaltes eines Parallelogramms.
$\vec a=\begin{pmatrix} -2\\ -1\\ 3 \end{pmatrix}$
$\vec b=\begin{pmatrix} -1\\ -3\\ 4 \end{pmatrix}$
LösungAn diesem Bild ist zu erkennen, dass die beiden Vektoren
- $\vec a=\vec{AB}=\begin{pmatrix} -2\\ -1\\ 3 \end{pmatrix}$ sowie
- $\vec b=\vec{AC}=\begin{pmatrix} -1\\ -3\\ 4 \end{pmatrix}$
Der Flächeninhalt des Dreiecks $ABC$ ist die Hälfte des Flächeninhaltes des Parallelogramms.
$A_D=\frac12\left|\begin{pmatrix} -2\\ -1\\ 3 \end{pmatrix} \times \begin{pmatrix} -1\\ -3\\ 4 \end{pmatrix}\right|=\frac12\left| \begin{pmatrix} 5\\ 5\\ 5 \end{pmatrix}\right|=\frac12 \cdot \sqrt{5^2+5^2+5^2}\approx 4,33$ [FE].
8'883
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'389
Lernvideos
36'076
Übungen
32'624
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel
Sehr hilfreiches Video! Daumen hoch :)