Rekonstruktion gebrochenrationaler Funktionen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Rekonstruktion gebrochenrationaler Funktionen
Wie du gebrochen-rationale Funktionen rekonstruierst, ist Schwerpunkt dieses Videos. Dabei schauen wir zusammen noch einmal die Besonderheiten gebrochen-rationaler Funktionen wie Asymptoten, Polstellen und das Verhältnis von Zählergrad und Nennergrad an. Anschließend rechnen wir gemeinsam eine Beispielaufgabe, um das gelernte Wissen zu festigen. Viel Spaß!
Transkript Rekonstruktion gebrochenrationaler Funktionen
Hallo. Ich bin Aline. Und in diesem Video werden wir uns mit der Rekonstruktion gebrochenrationaler Funktionen beschäftigen. Dazu wiederholen wir zunächst die Eigenschaften gebrochenrationaler Funktionen und werden anschließend eine Beispielaufgabe lösen. Los gehts! Anders, als eine ganzrationale Funktion ist eine gebrochenrationale Funktion an einigen Stellen nicht definiert. Dies ist immer dann der Fall, wenn der Nenner 0 wird. Aus diesem Grund interessiert uns neben den uns schon bekannten Eigenschaften, wie zum Beispiel Null- oder Extremstellen, das Verhalten der Funktion an den nicht definierten Stellen. Solche Definitionslücken werden auch Polstellen genannt. Die Funktion f(x) = x/(x - 1) zum Beispiel, ist an der Stelle x=1 nicht definiert. Dies können wir auch erkennen, wenn wir uns den verlauf der Funktion anschauen. Da die Funktion eine Polstelle bei x=1 besitzt, nähert sie sich an einer senkrechten Asymptote an der Stelle x=1 an. Da der Graph von dem negativen in den positiven Bildbereich springt, spricht man hier von einer Polstelle mit Vorzeichenwechsel. Dies ist immer dann der Fall, wenn der Pol ungerader Ordnung ist. Bei einem Pol gerader Ordnung ändert der Graph das Vorzeichen des Bildbereiches nicht. Man spricht dann von einer Polstelle ohne Vorzeichenwechsel. Wir wissen, dass ganzrationale Funktionen für unendliche x auch gegen plus oder minus Unendlich streben. Dies ist bei gebrochenrationalen Funktionen nicht immer der Fall. Abhängig von Zähler- und Nennergrad können wir vier verschiedene Fälle unterscheiden: Ist der Nennergrad größer als der Zählergrad, ist die x-Achse waagerechte Asymptote der Funktion. Nehmen wir zum Beispiel die Funktion g(x) = 1/(x2 - 1). Wollen wir den Limes x gegen plus oder minus Unendlich für 1/(x2 - 1) berechnen, können wir zunächst die höchste Potenz, also x2 ausklammern und erhalten den Limes x gegen plus oder minus Unendlich für (x2×1/x2)/(x2×(1 - 1/x2). Wir können nun x2 kürzen und es bleibt der Limes x gegen plus oder minus Unendlich für (1/x2)/(1 - 1/x2) übrig. Auch hier können wir die höchste Potenz ausklammern und erhalten als Grenzwert den Limes x gegen plus oder minus Unendlich für x2/(x2×(1 - 1/x2)), sodass wir als Grenzwert null erhalten. Dies kann man auch schön in der Abbildung sehen. Entspricht der Nennergrad dem Zählergrad, dann ergibt dies eine waagerechte Asymptote mit dem Abstand c von der x-Achse. Nehmen wir zum Beispiel die Funktion h(x) =x2/(x2 - 1). Auch hier können wir die höchste Potenz ausklammern und erhalten für den Grenzwert Limes x gegen plus/minus unendlich ist gleich x2/(x2×(1 - 1/x2. Wir können x2 kürzen und wissen, dass 1/x2 für besonders große und kleine x null wird. Es bleibt 1 übrig. Es ergibt sich also eine waagerechte Asymptote bei y=1. Ist der Grad im Nenner um eins kleiner als im Zähler, erhalten wir eine Asymptote in Form einer linearen Funktion. Ist der Grad im Nenner kleiner ls der im Zähler, reicht das Ausklammern nicht mehr aus, um die Funktionsgleichung der Asymptote zu ermitteln. In diesem Fall muss man eine Polynomdivision durchführen. Dabei dividiert man den Zähler durch den Nenner. Für die Funktion k(x) = x2/(x - 5) teilt man x2 : (x-5). Und erhält x + 5 + 25/(x-5). Der lineare Anteil, also (x+5) entspricht der schiefen Asymptote. Ist der Grad im Nenner um mehr als eins kleiner als im Zähler, dann ergibt sich für die Asymptote eine Näherungskurve. Die Polynomdivision der Funktion m(x) = (x3 + 2x)/(x - 1) ergibt x2 + x + 3 Rest 3. Die Näherungskurve kann nur durch x2 + x + 3 beschrieben werden. Um das Thema zu festigen, lösen wir nun gemeinsam eine Beispielaufgabe: Gesucht sei eine gebrochenrationale Funktion, die bei x=3 eine Polstelle besitzt, eine waagerechte Asymptote bei y=-1 hat und deren Nullstelle bei x=2 liegt. Wir vermuten einen Graphen mit dem folgenden Verlauf. Aus diesen Angaben kannst du nun eine gebrochenrationale Funktion aufstellen. Wie erwähnt, betrachten wir den Nenner, um Polstellen zu ermitteln. Die Polstelle dieser Funktion liegt bei 3. Das heißt, der Nenner wird 0 bei x=3. Ein möglicher Nenner wäre daher x-3. Wir wissen auch, dass die Funktion eine waagerechte Asymptote bei y=-1 besitzt. Dies lässt darauf schließen, dass Zähler- und Nennergrad übereinstimmen. Der Nennergrad ist 1. Daher muss auch der höchste Grad im Zähler 1 sein. Wir wissen also, dass im Zähler -x+c steht. Da die Asymptote -1 ist, x im Nenner jedoch positiv ist, muss im Zähler ein negatives x stehen. x ergibt sich aus der Nullstelle. Diese ist 2. Das heißt: -2+c=0. Damit ergibt sich für c=2. Nun können wir unsere Funktion aufstellen. Diese lautet: n(x) = (-x + 2)/(x - 3). Wir haben uns die Eigenschaften von gebrochenrationalen Funktionen noch einmal näher angeschaut. Du hast gelernt, je nach Verhalten im Unendlichen und je nach Polstelle kannst du den Graphen mithilfe weniger Angaben rekonstruieren. Probiere das doch selbst einmal mit verschiedenen Angaben zu Polstellen und Nullstellen und Asymptoten aus. Viel Spaß dabei.
Rekonstruktion gebrochenrationaler Funktionen Übung
-
Gib an, wie das Grenzwertverhalten gebrochenrationaler Funktionen von Zähler- und Nennergrad abhängen.
-
Ermittle eine gebrochenrationale Funktion mit den gegebenen Eigenschaften.
-
Entscheide, welche der Funktionen eine Polstelle mit Vorzeichenwechsel besitzt.
-
Prüfe, welche der Funktionen die gegebenen Eigenschaften besitzt.
-
Beschreibe die Eigenschaften von gebrochenrationalen Funktionen.
-
Bestimme eine mögliche Funktionsgleichung der gebrochenrationalen Funktion mit den gegebenen Eigenschaften.
9'226
sofaheld-Level
6'600
vorgefertigte
Vokabeln
7'665
Lernvideos
37'111
Übungen
32'360
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben