Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Binomische Formeln: Faktorisieren

Erfahrt, wie ihr binomische Formeln faktorisieren könnt, indem ihr sie rückwärts anwendet. Lernt die Grundlagen kennen und betrachtet Beispiele zur ersten, zweiten und dritten binomischen Formel. Interessiert? Das und vieles mehr findet ihr im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Binomische Formeln: Faktorisieren

Was bedeutet Faktorisieren von binomischen Formeln?

1/5
Bereit für eine echte Prüfung?

Das Binomische Formeln Faktorisieren Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.4 / 192 Bewertungen
Die Autor*innen
Avatar
Team Digital
Binomische Formeln: Faktorisieren
lernst du in der Sekundarstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Grundlagen zum Thema Binomische Formeln: Faktorisieren

Einführung: binomische Formeln faktorisieren

In diesem Text wird einfach erklärt, wie man binomische Formeln faktorisiert. Dafür werden die binomischen Formeln rückwärts angewandt. Damit ein Term faktorisiert werden kann, muss er bestimmte Bedingungen erfüllen. Diese werden im Text genauer erklärt und an Beispielen gezeigt.

Was bedeutet Faktorisieren von binomischen Formeln?

Wendet man die binomischen Formeln rückwärts an, so wird aus einer Differenz oder einer Summe ein Produkt, also eine Malaufgabe. Dieser Vorgang wird in der Mathematik als Faktorisieren bezeichnet, da ein Produkt stets aus Faktoren besteht.

Wie faktorisiert man die dritte binomische Formel?

Schauen wir uns zuerst die dritte binomische Formel an. Diese lautet:

$\bigl(a+b\bigr) \cdot \bigl(a-b\bigr) = a^{2} - b^{2}$

Da auf der rechten Seite eine Differenz steht, muss der zu faktorisierende Term folgende Bedingung erfüllen:

  • Es muss sich bei dem zu faktorisierenden Term um eine Differenz handeln.

Zunächst müssen die Zahlen ermittelt werden, die quadriert den Minuenden und den Subtrahenden ergeben. So kann jede Differenz faktorisiert werden.

  • Der faktorisierte Term setzt sich zusammen aus Summe und Differenz der ermittelten Beträge.

Betrachten wir dafür folgendes Beispiel:

$81x^{2} - 144$

Bei den Zahlen $81$ und $144$ handelt sich um Quadratzahlen. Quadrieren wir $9x$ so erhalten wir $81x^{2}$. Bei $9x$ handelt es sich um einen der gesuchten Beträge. Quadrieren wir $12$ so erhalten wir $144$. Somit ist $12$ der zweite gesuchte Betrag. Der faktorisierte Term lautet demnach:

$81x^{2} - 144 = \bigl(9x+12\bigr) \cdot \bigl(9x-12\bigr)$

Wie faktorisiert man die zweite binomische Formel?

Schauen wir uns als Nächstes die zweite binomische Formel an. Diese lautet:

$\bigl(a-b\bigr)^{2} = a^{2} - 2ab + b^{2}$

Der zu faktorisierende Term muss folgende Bedingungen erfüllen:

  • Er muss aus drei Gliedern bestehen $\bigl(a^{2}; 2ab; b^{2}\bigr)$.
  • Ein Glied muss die anderen beiden Glieder in der richtigen Weise kombinieren. Bei diesem Glied handelt es sich um den Subtrahenden $\bigl(-2ab\bigr)$.

Zunächst müssen die Zahlen ermittelt werden, die quadriert und in Kombination die jeweiligen Glieder ergeben. Da das kombinierte Glied bei der zweiten binomischen Formel durch ein Minus hervorgehoben wird, ist leicht erkennbar, welches Glied das kombinierte ist.

  • Der faktorisierte Term ist die quadrierte Differenz der beiden ermittelten Beträge.

Betrachten wir dafür das Beispiel:

$2{,}25 + 6{,}25y^{2} - 7{,}5y$

Der Term besteht aus drei Gliedern. Die erste Bedingung ist damit erfüllt. Der Subtrahend ist $-7{,}5y$. Wird $1{,}5$ quadriert, so erhält man $2{,}25$. Wird $2{,}5y$ quadriert, so erhält man $6{,}25y^{2}$. Demnach sind die gesuchten Beträge $1{,}5$ und $2{,}5y$. Werden sie multipliziert und verdoppelt, so erhalten wir:

$1{,}5 \cdot 2{,}5y \cdot 2 = 7{,}5y$

Wir erhalten das dritte kombinierte Glied. Somit ist die zweite Bedingung ebenfalls erfüllt. Der Term kann vollständig faktorisiert werden. Das Ergebnis ist die Differenz der ermittelten Beträge zum Quadrat:

$2{,}25 + 6{,}25y^{2} - 7{,}5y = \bigl(1{,}5-2{,}5y\bigr)^{2}$

Wie faktorisiert man die erste binomische Formel?

Schauen wir uns nun noch die erste binomische Formel an. Diese lautet:

$\bigl(a+b\bigr)^{2} = a^{2} + 2ab + b^{2}$

Durch ihre Ähnlichkeit zur zweiten binomischen Formel sind auch die Bedingungen für einen zu faktorisierenden Term ähnlich:

  • Er muss aus drei Gliedern bestehen $\bigl(a^{2}; 2ab; b^{2}\bigr)$.
  • Ein Glied muss die anderen beiden Glieder in der richtigen Weise kombinieren $\bigl(+2ab\bigr)$.

Zunächst müssen wieder die Zahlen ermittelt werden, die quadriert und in Kombination die jeweiligen Glieder ergeben. Da das kombinierte Glied bei der ersten binomischen Formel nicht durch ein Minus hervorgehoben wird, müssen wir etwas genauer hinschauen, um es zu ermitteln.

  • Der faktorisierte Term ist die quadrierte Summe der beiden ermittelten Beträge.

Betrachten wir dafür das Beispiel:

$16x^{2} + 36 + 48x$

Der Term besteht aus drei Gliedern. Die erste Bedingung ist damit erfüllt. Die Zahlen $16$ und $36$ sind Quadratzahlen. Die $48$ hingegen ist keine Quadratzahl. Somit ist dies wahrscheinlich das kombinierte Glied. Wird $4x$ quadriert, so erhält man $16x^{2}$. Wird $6$ quadriert, so erhält man $36$. Demnach sind die gesuchten Beträge $4x$ und $6$. Werden sie multipliziert und verdoppelt, so erhalten wir:

$4x \cdot 6 \cdot 2 = 48x$

Wir erhalten das dritte kombinierte Glied. Somit ist die zweite Bedingung ebenfalls erfüllt. Der Term kann vollständig faktorisiert werden. Das Ergebnis ist die Summe der ermittelten Beträge zum Quadrat:

$16x^{2} + 36 + 48x = \bigl(4x+6\bigr)^{2}$

Zusammenfassung: binomische Formeln faktorisieren

Die folgenden Stichpunkte fassen noch einmal das Wichtigste zur Faktorisierung binomischer Formeln zusammen.

Erste binomische Formel
Es müssen zwei Eigenschaften gegeben sein, damit ein Term mithilfe der ersten binomischen Formel faktorisiert werden kann.

  1. Die erste Bedingung lautet: Der Term muss über mindestens drei Glieder verfügen.
  2. Die zweite Bedingung lautet: Ein Glied muss eine besondere Kombination der anderen beiden darstellen $\bigl(+2ab\bigr)$.

Da alle Glieder Summanden sind, müssen sie einzeln überprüft werden, um das kombinierte Glied zu ermitteln.

Zweite binomische Formel
Es müssen zwei Eigenschaften gegeben sein, damit ein Term mithilfe der zweiten binomischen Formel faktorisiert werden kann.

  1. Die erste Bedingung lautet: Der Term muss über mindestens drei Glieder verfügen.
  2. Die zweite Bedingung lautet: Ein Glied muss eine besondere Kombination der anderen beiden darstellen $\bigl(-2ab\bigr)$.

Da es sich bei dem kombinierten Glied um einen Subtrahenden handelt, ist es durch ein Minus klar von den anderen beiden zu unterscheiden.

Dritte binomische Formel

  • Jede Differenz zweier Quadratzahlen kann mithilfe der dritten binomischen Formel faktorisiert werden.
  • Es existiert kein kombiniertes Glied.

Zusätzlich zum Text und dem Video findest du bei sofatutor noch Übungen und Arbeitsblätter mit Aufgaben zum Thema Binomische Formeln faktorisieren.

Teste dein Wissen zum Thema Binomische Formeln Faktorisieren!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Binomische Formeln: Faktorisieren

In der Faktorisierungs-Factory werden unübersichtliche Terme in handliche Portionen aus einzelnen Faktoren umgewandelt. Doch die Technik ist empfindlich! Längst nicht jeder Term kann dort vollständig umgewandelt werden. Denn hier werden Terme NUR unter Verwendung der binomischen Formeln faktorisiert. In diesem Video wenden wir die drei binomischen Formeln rückwärts an, um mit ihrer Hilfe Terme zu faktorisieren. Wir schauen, welche Bedingungen Terme dafür aufweisen müssen. Außerdem sehen wir uns Beispiele für jede der binomischen Formeln an. Wir beginnen mit der dritten binomischen Formel. Um einen Term mit ihrer Hilfe zu faktorisieren, muss es sich bei ihm um eine Differenz handeln. Zur Faktorisierung ermitteln wir die Beträge der Zahlen, die quadriert den Minuenden und den Subtrahenden der Differenz ergeben. So kann man jede Differenz faktorisieren. Der faktorisierte Term besteht dann aus dem Produkt aus Summe und Differenz der ermittelten Beträge. Schauen wir uns dazu ein Beispiel an: 81 und 144 sind Quadratzahlen. Quadrieren wir 9x, erhalten wir 81 x Quadrat. 9x ist also einer der gesuchten Beträge. Quadrieren wir 12, kommen wir auf 144. Der andere Betrag ist also 12. Der faktorisierte Term lautet also: 'in Klammern' '9x PLUS 12' mal 'in Klammern' '9x minus 12'. Machen wir mit der zweiten binomischen Formel weiter. Hier muss der Term folgende Bedingungen erfüllen: erstens muss er aus drei Gliedern bestehen. zwei davon bilden die Summe zweier Quadratzahlen. Davon ziehen wir das verdoppelte Produkt zweier Beträge ab, deren Quadrat die jeweils anderen Glieder sind. Die zweite Bedingung ist also, dass der Term über einen Subtrahenden verfügt, der die beiden anderen Glieder in der richtigen Weise kombiniert. Daher können wir mit der zweiten binomischen Formel nur spezielle Terme vollständig faktorisieren. Der faktorisierte Term besteht dann aus der Differenz der ermittelten Beträge zum Quadrat. Sehen wir uns auch hier ein Beispiel an: Dieser Term verfügt über drei Glieder. Das stimmt also schon mal. Der Subtrahend ist hier 'minus 7,5y'. Mal sehen, ob wir ihn mit Hilfe der anderen beiden Glieder darstellen können. Quadrieren wir 1,5, erhalten wir 2,25. Quadrieren wir 2,5 y, kommen wir auf 6,25 y Quadrat. Die gesuchten Beträge sind also 1,5 und 2,5 y. Multiplizieren und verdoppeln wir sie, kommen wir auf 7,5 y, also genau den Subtrahenden. Damit ist auch die zweite Bedingung erfüllt. Wir können den Term daher vollständig faktorisieren. Als Ergebnis erhalten wir die Differenz der ermittelten Beträge, also '1,5 minus 2,5y' zum Quadrat. Dann können wir uns jetzt der ersten binomischen Formel zuwenden: Sie unterscheidet sich von der zweiten binomischen Formel nur dadurch, dass wir hier Pluszeichen statt Minuszeichen haben. Wir können daher die Bedingungen für das Faktorisieren mit Hilfe der zweiten binomischen Formel fast 1 zu 1 übernehmen. Auch hier benötigen wir drei Glieder. Eines davon besteht aus dem verdoppelten Produkt zweier Beträge, deren Quadrate gerade die anderen beiden Glieder ergeben. Auch für die erste binomische Formel gilt also, dass wir mit ihrer Hilfe nur spezielle Terme vollständig faktorisieren können. Bei der zweiten binomischen Formel erkennen wir das kombinierte Glied sofort, weil es durch das Minus ausgezeichnet ist. Bei der ersten binomischen Formel trifft das nicht zu. Wir müssen also etwas genauer hinschauen. Als faktorisierten Term erhalten wir die Summe der beiden Beträge, die wir so herausgefunden haben und die zum Quadrat. Schauen wir uns auch hier ein Beispiel an. Offensichtlich haben wir auch hier drei Glieder. Diese Bedingung ist also erfüllt. 16 und 36 sind Quadratzahlen. 48 aber nicht, daher ist das dritte Glied ein guter Kandidat für die Kombination der beiden anderen. Überprüfen wir das! Quadrieren wir 4x, erhalten wir 16 x Quadrat. Quadrieren wir 6, kommen wir auf 36. Multiplizieren und verdoppeln wir sie, kommen wir auf 48x, also auf das dritte Glied. Deshalb ist auch die zweite Bedingung erfüllt. Als faktorisierten Term erhalten wir die Summe der beiden Beträge, also '4x plus 6' zum Quadrat. Fassen wir das noch einmal zusammen: Um einen Term mit Hilfe der ersten binomischen Formel zu faktorisieren, muss er zwei Eigenschaften aufweisen: erstens muss er über mindestens drei Glieder verfügen. Zweitens muss eines davon eine spezielle Kombination der beiden anderen darstellen. Weil hier alle Glieder Summanden sind, musst Du sie einzeln überprüfen, um das kombinierte zu finden. Bei der zweiten binomischen Formel ist das fast genauso. Wieder braucht man drei Glieder, von denen eines eine spezielle Kombination der beiden anderen darstellt. Diese Kombination ist aber leicht herauszufinden, denn sie weist als einziges Glied ein Minus auf. Die dritte binomische Formel kannst du zur Faktorisierung jeder Differenz nutzen. Hier gibt es kein kombiniertes Glied. Doch macht man das mit falschen Termen, wird die Maschine heftig lärmen!

10 Kommentare
  1. Hat mir sehr geholfen!

    Von Elija, vor etwa 2 Jahren
  2. Hallo Madlen Herberg, bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.
    Liebe Grüße aus der Redaktion

    Von Albrecht K., vor etwa 4 Jahren
  3. Viel mehr erklären wie das geht

    Von Madlen F., vor etwa 4 Jahren
  4. Schreiben morgen eine Klassenarbeit und ich habe noch nicht gelernt...
    Das Video hat mir SEHR GEHOLFEN!!!

    Von Karoline K., vor etwa 4 Jahren
  5. Echt Super

    Von Braun Murrhardt, vor etwa 4 Jahren
Mehr Kommentare

Binomische Formeln: Faktorisieren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Binomische Formeln: Faktorisieren kannst du es wiederholen und üben.
  • Bestimme, welche binomische Formel du anwenden kannst.

    Tipps

    Die zweite binomische Formel lautet: $a^2-2ab+b^2 = (a-b)^2$.

    Hier besteht der linke Teil der Formel aus drei Gliedern, von denen eines negativ ist.

    Um die erste binomische Formel anzuwenden, müssen fast die gleichen Voraussetzungen gelten wie bei der zweiten. Der einzige Unterschied ist, dass alle Teile des Terms positiv sind.

    Lösung

    Um die dritte binomische Formel zur Faktorisierung eines Terms zu verwenden, muss es sich bei dem Term um eine Differenz handeln. Außerdem müssen die beiden Komponenten Quadratzahlen sein.

    • Das ist bei $81x^2-144$ gegeben.
    Um die zweite binomische Formel bei der Faktorisierung eines Terms anzuwenden, muss der Term aus drei Gliedern bestehen, wobei eines dieser Glieder negativ ist. Außerdem muss eines der Glieder des Terms aus dem verdoppelten Produkt zweier Beträge $a$ und $b$ bestehen. Die anderen beiden Glieder bilden jeweils das Quadrat der Beträge $a$ und $b$.

    • Bei $2,25+6,25y^2-7,5y$ können wir also die zweite binomische Formel anwenden.
    Um die erste binomische Formel anzuwenden, müssen fast die gleichen Voraussetzungen gelten wie bei der zweiten. Der einzige Unterschied ist, dass alle Teile des Terms positiv sind.

    • Dies ist bei $16x^2+36+48x$ der Fall.
    • Bei $136+48x$ gilt keine dieser Voraussetzungen.
  • Beschreibe das Faktorisieren mit den binomischen Formeln.

    Tipps

    Möchtest du die dritte binomische Formel bei einem gegebenen Term anwenden, dann ist $a$ die Zahl, die quadriert den positiven Teil des Terms ergibt.

    Hast du $a$ und $b$ identifiziert, kannst du die Werte in die binomische Formel einsetzen und die faktorisierte Form des Terms angeben.

    Lösung

    Um die dritte binomische Formel zur Faktorisierung eines Terms zu verwenden, muss es sich bei dem Term um eine Differenz handeln. Außerdem müssen die beiden Komponenten Quadratzahlen sein.

    Der Term $81x^2-144$ erfüllt diese Voraussetzungen. Es gilt nämlich:

    $(9x)^2=81x^2$ und

    $12^2=144$.

    Außerdem werden die beiden Glieder voneinander abgezogen.

    • Hier werden also zwei Glieder voneinander abgezogen, die gleichzeitig Quadratzahlen sind. Also sind die Voraussetzungen für die Anwendung der dritten binomischen Formel erfüllt.
    „Jetzt können wir die dritte binomische Formel verwenden. Diese lautet:

    $a^2-b^2=(a+b) \cdot (a-b)$.

    Hier können wir die Variablen identifizieren als:

    $a=9x$ und

    $b=12$.

    Mit der dritten binomischen Formel können wir also schreiben:

    $81x^2-144= (9x)^2-12^2=(9x+12) \cdot(9x-12)$.“

    • Da wir bereits herausgefunden haben, welche Zahlen quadriert die Glieder des Terms ergeben, können wir den Term mit der binomischen Formel umschreiben.
    Ähnlich verhält es sich bei der $1.$ und der $2.$ binomischen Formel. Hier besteht jeweils nur der Unterschied, dass der Term drei Glieder besitzt. Das dritte Glied muss sich aus den beiden anderen zusammensetzen. Sind die beiden anderen Glieder Quadratzahlen in Form von $a^2$ und $b^2$, so muss das dritte Glied $2\cdot ab$ sein.

  • Ermittle, welche der binomischen Formeln angewandt werden kann.

    Tipps

    Um die dritte binomische Formel anzuwenden, muss der Term aus zwei Gliedern bestehen, von denen eines vom anderen abgezogen wird. Außerdem müssen beide Zahlen Quadratzahlen sein.

    Um die zweite binomische Formel anzuwenden, muss der Term aus drei Gliedern bestehen, von denen eines negativ ist. Außerdem müssen die zwei positiven Glieder Quadratzahlen $a^2$ und $b^2$ sein, sodass das letzte Glied gleich $-2ab$ ist.

    Um die erste binomische Formel anzuwenden, muss der Term aus drei Gliedern bestehen, die alle positiv sind. Außerdem müssen zwei Glieder Quadratzahlen $a^2$ und $b^2$ sein, sodass das letzte Glied gleich $+2ab$ ist.

    Lösung

    Um die dritte binomische Formel anzuwenden, muss der Term aus zwei Gliedern bestehen, von denen eines vom anderen abgezogen wird. Außerdem müssen beide Zahlen Quadratzahlen sein. Das trifft auf folgende Terme zu:

    • $x^2-4$ und $9-x^2$
    Um die zweite binomische Formel anzuwenden, muss der Term aus drei Gliedern bestehen, von denen eines negativ ist. Außerdem müssen die zwei positiven Glieder Quadratzahlen $a^2$ und $b^2$ sein, sodass das letzte Glied gleich $-2ab$ ist. Dies ist für folgende Terme der Fall:

    • $x^2-4x+4$ und $25x^2-20x+4$
    Beim ersten Term gilt mit der zweiten binomischen Formel: $a=x$ und $b=2$. Also erhalten wir: $x^2-4x+4= x^2-2 \cdot x \cdot 2+2^2= (x-2)^2$

    Um die erste binomische Formel anzuwenden, muss der Term aus drei Gliedern bestehen, die alle positiv sind. Außerdem müssen zwei Glieder Quadratzahlen $a^2$ und $b^2$ sein, sodass das letzte Glied gleich $+2ab$ ist. Dies gilt für folgende Terme:

    • $4x^2+8x+4$ und $x^2+6x+9$
    Für den ersten Term erhalten wir mit der ersten binomischen Formel für $a=2x$ und $b=2$: $4x^2+8x+4= (2x)^2+2 \cdot 2x \cdot 2=(2x+2)^2$

    Bei folgenden Termen kannst du keine binomische Formel zur Faktorisierung anwenden, da sie keine der Anforderungen entsprechen:

    • $16x^2-10x+1$
  • Wende die erste und zweite binomische Formel an.

    Tipps

    Bei den ersten drei Termen benötigst du die zweite binomische Formel. Das erkennst du daran, dass einer der Terme negativ ist. Diese lautet:

    $a^2-2ab+b^2 = (a-b)^2$.

    Die zweite binomische Formel lautet:

    $a^2-2ab+b^2 = (a-b)^2$.

    Betrachtest du einen Term mit zwei positiven und einem negativen Term, dann sind die beiden positiven Glieder jeweils das Quadrat von $a$ und $b$.

    Lösung

    Du kannst die Lücken füllen, indem du die ersten beiden binomischen Formeln anwendest. Bei einigen Termen benötigst du die zweite binomische Formel. Diese erkennst du daran, dass einer der Glieder der Terme negativ ist. Diese zweite binomische Formel lautet:

    $a^2-2ab+b^2 = (a-b)^2$.

    Betrachten wir die erste Formel:

    $9x^2-12x+4$.

    Jetzt gilt es die Werte $a$ und $b$ zu identifizieren. Die beiden positiven Terme sind jeweils das Quadrat von $a$ und $b$. Hier gilt:

    $a=3x$, denn $(3x)^2=9x^2$ und

    $b=2$, denn $2^2=4$.

    Dass diese Werte korrekt sind, können wir am letzten Glied $(-12x)$ überprüfen. Setzen wir diese Werte in das negative Glied der binomischen Formel ein, erhalten wir:

    $-2ab=-2 \cdot 3x \cdot 2=-12x$.

    Das entspricht genau dem letzten Glied unseres Terms. Also haben wir die korrekten Werte für $a$ und $b$ gefunden. Mit der zweiten binomischen Formel schreiben wir dann:

    • $9x^2-12x+4=(3x)^2-2 \cdot 3x \cdot 2+2^2=(3x-2)^2$.
    Diese Terme kannst du genauso lösen:

    • $4x^2-4x+1=(2x)^2-2 \cdot 2x \cdot 1+1^2=(2x-1)^2$
    • $9-12x+4x^2=(3)^2-2 \cdot 3 \cdot 2x+(2x)^2=(3-2x)^2$
    • $9x^2-24x+16=(9x)^2-2 \cdot 3x \cdot 4+4^2=(3x-4)^2$
    Bei den anderen Termen musst du die erste binomische Formel verwenden. Das erkennst du daran, dass alle Glieder des Terms positiv sind. Hier müssen wir die einzelnen Glieder identifizieren, indem wir überlegen, ob sie Quadratzahlen sein können. Im ersten Term

    $25x^2+20x+4$

    sind $25x^2$ und $4$ die quadratischen Terme, denn diese können durch Quadrieren einer Zahl erhalten werden. So ergibt sich:

    • $25x^2+20x+4=(5x)^2+2 \cdot 5x \cdot 2+(2)^2=(5x+2)^2$
    • $100x^2+200x+100=(10x)^2+2 \cdot 10x \cdot 10+(10)^2=(10x+10)^2$
    • $9+42x+49x^2=(3)^2+2 \cdot 3 \cdot 7x+(7x)^2=(3+7x)^2$
    • $9x^2+12x+4=(3x)^2+2 \cdot 3x \cdot 2+(2)^2=(3x+2)^2$
  • Bestimme die korrekten Aussagen zum Faktorisieren mit den binomischen Formeln.

    Tipps

    Die dritte binomische Formel lautet: $a^2-b^2=(a+b) \cdot (a-b)$.

    Die erste binomische Formel lautet: $a^2+2ab+b^2 = (a+b)^2$.

    Eines der Glieder besteht aus dem verdoppelten Produkt zweier Beträge ($2ab$) und die anderen beiden Glieder aus dem Quadrat der Beträge ($a^2$ und $b^2$).

    Lösung

    Diese Aussage ist falsch:

    „Mit der dritten binomischen Formel kannst du zwei Beträge $a$ und $b$, die quadriert und addiert wurden, faktorisieren.“

    • Die dritte binomische Formel lautet: $a^2-b^2=(a+b) \cdot (a-b)$. Also handelt es sich hier um zwei Beträge, die quadriert und subtrahiert werden.
    Diese Aussagen sind richtig:

    „Um Terme zu faktorisieren, kannst du die binomischen Formeln rückwärts anwenden.“

    „Um einen Term mit der dritten binomischen Formel zu faktorisieren, muss es sich bei dem gegebenen Term um eine Differenz handeln.“

    „Um die zweite binomische Formel bei der Faktorisierung eines Terms anzuwenden, muss der Term aus drei Gliedern bestehen, wobei eines dieser Glieder negativ ist.“

    • Die zweite binomische Formel lautet: $a^2-2ab+b^2 = (a-b)^2$. Hier kommen drei Glieder vor, von denen eines negativ ist.
    „Besteht eines der Glieder eines Terms aus dem verdoppelten Produkt zweier Beträge $a$ und $b$ und sind die anderen beiden Glieder das Quadrat der beiden Beträge $a$ und $b$, dann kannst du die eine binomische Formel anwenden, um den Term zu faktorisieren.“

    • Die erste binomische Formel lautet: $a^2+2ab+b^2 = (a+b)^2$. Eines der Glieder besteht aus dem verdoppelten Produkt zweier Beträge ($2ab$) und die anderen beiden Glieder aus dem Quadrat der Beträge ($a^2$ und $b^2$). Also sind dies die Voraussetzungen diese Formel anzuwenden.
  • Wende die dritte binomische Formel zum Faktorisieren der Terme an.

    Tipps

    Die dritte binomische Formel lautet:

    $a^2-b^2=(a+b) \cdot (a-b)$

    In den Termen musst du zunächst $a$ und $b$ identifizieren. $a$ ist die Zahl, die quadriert den positiven Teil des Terms ergibt. $b$ ist also die Zahl, die quadriert den negativen Teil ergibt.

    Lösung

    Du kannst die Terme faktorisieren, indem du die dritte binomische Formel anwendest. Diese lautet:

    $a^2-b^2=(a+b) \cdot (a-b)$.

    In den Termen musst du also zunächst $a$ und $b$ identifizieren. $a$ ist die Zahl, die quadriert den positiven Teil des Terms ergibt. $b$ ist also die Zahl, die quadriert den negativen Teil ergibt. Für den ersten Term erhalten wir:

    $a=8$, denn $a^2=8^2=64$ und

    $b=3x$, denn $b^2=(3x)^2=9x^2$.

    Damit wenden wir die dritte binomische Formel an:

    • $64-9x^2=8^2-(3x)^2=(8-3x)\cdot(8+3x)$.
    Für die anderen Terme erhalten wir genauso:

    • $81-144x^2=9^2-(12x)^2=(9-12x) \cdot(9+12x)$
    • $16-36x^2=4^2-(6x)^2=(4-6x) \cdot(4+6x)$
    • $16x^2-36=(4x)^2-6^2=(4x-6) \cdot(4x+6)$
    • $25x^2-121=(5x)^2-11^2=(5x-11) \cdot(5x+11)$
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'905

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'232

Lernvideos

35'802

Übungen

32'564

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden