Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Flächeninhalt und Umfang des Trapezes

Ein Trapez ist ein spezielles Viereck mit zwei parallelen Seiten. Es kann verschiedene Formen haben, zum Beispiel allgemein, symmetrisch oder rechtwinklig. Möchtest du den Flächeninhalt oder Umfang eines Trapezes berechnen? Finde es hier heraus und lerne mehr über Trapeze!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Flächeninhalt und Umfang des Trapezes

Welche Bedingung erfüllt ein Trapez?

1/5
Bereit für eine echte Prüfung?

Das Flächeninhalt Trapez Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.2 / 261 Bewertungen
Die Autor*innen
Avatar
Team Digital
Flächeninhalt und Umfang des Trapezes
lernst du in der Sekundarstufe 1. Klasse - 2. Klasse

Beschreibung zum Video Flächeninhalt und Umfang des Trapezes

Du weißt, was ein Trapez ist und welche Eigenschaften es hat. Du weißt auch, wie man ein Trapez korrekt beschriftet. In diesem Video wirst du lernen, wie du den Umfang und den Flächeninhalt eines Trapezes berechnest. Du lernst die wichtigsten Formeln kennen. Außerdem wird die Formel für den Flächeninhalt geometrisch hergeleitet. Du erfährst an Beispielen, wie man mit den Formeln rechnet.

Grundlagen zum Thema Flächeninhalt und Umfang des Trapezes

Was ist ein Trapez?

Ein Trapez ist ein spezielles Viereck, nämlich eines, bei dem zwei Seiten parallel zueinander sind. Es gibt verschiedene Formen von Trapezen: Bei einem allgemeinen Trapez sind alle Seiten verschieden lang und alle Winkel verschieden groß. Bei einem symmetrischen Trapez sind die beiden nicht parallelen Seiten gleich lang. Ein rechtwinkliges Trapez hat einen rechten Winkel. Auch Rechtecke, Quadrate und Parallelogramme sind Trapeze.

Jedes Viereck mit einem parallelen Seitenpaar ist ein Trapez.

Trapeze verschiedener Form

Kennst du das?
Hast du auch schon einmal bemerkt, dass Stufen von Treppen oft trapezförmig sind, besonders an Wendeltreppen? Die parallelen Seiten des Trapezes sind die vordere und hintere Kante jeder Stufe. Wenn du die Länge dieser Kanten sowie die Höhe der Stufe misst, kannst du den Umfang und den Flächeninhalt berechnen. So verstehst du, wie Mathematik in der Architektur genutzt wird!

Trapez – Flächeninhalt

Der Flächeninhalt eines Trapezes ist ein Maß dafür, wie viel Fläche das Trapez überdeckt. Der Flächeninhalt wird in einer Flächeneinheit wie km2\text{km}^{2}, m2\text m^{2} oder cm2\text{cm}^{2} angegeben.

Flächeninhalt Trapez – Formel

Um den Flächeninhalt eines Trapezes zu berechnen, benötigen wir die Höhe hh des Trapezes. Die Höhe ist der Abstand zwischen den beiden parallelen Seiten des Trapezes. Die Höhe hh steht immer senkrecht auf den beiden parallelen Seiten. Sind aa und cc die beiden parallelen Seiten des Trapezes, gilt für den Flächeninhalt die Formel:

ATrapez=12(a+c)hA_\text{Trapez} = \dfrac{1}{2} \cdot (a+c) \cdot h

Flächeninhalt Trapez – Herleitung

Die Formel für den Flächeninhalt eines Trapezes kann man geometrisch begründen:

Flächeninhalt Trapez Herleitung

Im ersten Schritt verdoppeln wir das Trapez und drehen die Kopie um 180180^\circ. Dadurch entsteht ein Parallelogramm mit horizontalen Seiten a+ca+c.
Im zweiten Schritt schneiden wir an der linken Seite ein Dreieck entlang der Höhe ab und fügen es rechts an. So entsteht ein Rechteck mit den Seiten a+ca+c (horizontal) und hh (vertikal).
Der Flächeninhalt dieses Rechtecks ist demnach (a+c)h(a+c) \cdot h. Da wir das Rechteck durch Verdoppelung des Trapezes erhalten haben, ist der Flächeninhalt des Trapezes genau halb so groß wie der des Rechtecks:

A=12(a+c)hA = \dfrac{1}{2} \cdot (a+c) \cdot h

Formel Flächeninhalt Trapez

Flächeninhalt Trapez – Beispiel

Wir betrachten ein Trapez mit den parallelen Seiten a=100 kma=100~\text{km} und c=40 kmc=40~\text{km} und der Höhe h=40 kmh=40~\text{km}. Wir setzen die Werte in die Formel ein und berechnen den Flächeninhalt:

A=12(100 km+40 km)40 km=2800 km2A = \dfrac{1}{2} \cdot (100~\text{km} + 40~\text{km}) \cdot 40~\text{km} = 2\,800~\text{km}^2

Schlaue Idee
Beim Planen eines Gartens kann das Wissen über den Flächeninhalt eines Trapezes helfen, genau zu berechnen, wie viel Platz du für Beete oder Rasenflächen benötigst.

Flächeninhalt Trapez – Rechner

beschriftetes Trapez Flächeninhalt




Hinweis: Alle Längen müssen in der gleichen Einheit angegeben werden. Der Flächeninhalt wird dann in der entsprechenden Flächeneinheit ausgegeben.
(Beispiel: aa, cc und hh in cm    \pu{cm} ~~ \Rightarrow ~~Flächeninhalt in cm2\pu{cm2})

Teste dein Wissen zum Thema Flächeninhalt Trapez!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Trapez – Umfang

Der Umfang UU eines Vierecks ist die Summe seiner vier Seitenlängen. Der Umfang entspricht der Strecke, die du ablaufen musst, um das Viereck einmal zu umrunden. Ein Trapez ist ein spezielles Viereck, daher ist der Umfang eines Trapezes ebenfalls die Summe der vier Seitenlängen des Trapezes.

Umfang Trapez – Formel

Wir bezeichnen die Seiten eines Vierecks mit aa, bb, cc und dd. Der Umfang UU ist die Summe dieser vier Längen. Du erhältst also die Formel:

UTrapez=a+b+c+dU_\text{Trapez} = a+b+c+d

Diese Formel gilt für jedes Trapez, gleich welcher Form, und noch allgemeiner für jedes Viereck.

Umfang Trapez – Beispiel

Wir betrachten ein großes symmetrisches Trapez mit den Seitenlängen a=100 kma=100~\text{km}, b=50 kmb=50~\text{km}, c=40 kmc=40~\text{km} und d=50 kmd=50~\text{km}. Der Umfang des Trapezes ist also:

100 km+50 km+40 km+50 km=240 km100~\text{km} + 50~\text{km} + 40~\text{km} + 50~\text{km} = 240~\text{km}

Umfang eines Trapezes

Umfang Trapez – Rechner

beschriftetes Trapez Umfang






Hinweis: Alle Größen (Seitenlängen oder Umfang) müssen in der gleichen Einheit angegeben werden. Die fehlende Größe wird dann in dieser Einheit ausgegeben.
(Beispiel: aa, cc, dd und Umfang in cm    b\pu{cm} ~~ \Rightarrow ~~b in cm\pu{cm})

Ausblick – das lernst du nach Flächeninhalt und Umfang des Trapezes

Weiter geht es mit der Raute und dem Drachenviereck. Um deine mathematischen Fähigkeiten weiter zu stärken, schau dir auch den Flächeninhalt und den Umfang von Rauten und Drachenvierecken an.

Zusammenfassung – Flächeninhalt und Umfang eines Trapez

  • Ein Trapez ist ein Viereck, bei dem zwei gegenüberliegende Seiten parallel zueinander sind. Es gibt viele verschiedene Formen von Trapezen. Auch Rechtecke, Quadrate und Parallelogramme sind Trapeze.
  • Der Flächeninhalt eines Trapez AA berechnet sich mit den beiden parallelen Seiten aa und cc des Trapezes und der Höhe hh. Es gilt:

    ATrapez=12(a+c)hA_{\text{Trapez}} = \dfrac{1}{2} \cdot (a + c) \cdot h

  • Der Umfang eines Trapez UU berechnet sich durch die Summe aller Seitenlängen aa, bb, cc und dd. Es gilt:

    UTrapez=a+b+c+dU_{\text{Trapez}} = a+b+c+d

Häufig gestellte Fragen zum Thema Flächeninhalt und Umfang des Trapezes

Transkript Flächeninhalt und Umfang des Trapezes

Die Weltraumorganisation SANA hat eine Meteoritenwarnung ausgegeben. Es bleibt nicht mehr viel Zeit. Dr. Kepler und ihr Team arbeiten nun auf Hochtouren. All ihre Berechnungen haben dazu geführt, dass ein trapezförmiges Schutzschild am geeignetsten ist. Für das Gestell muss sie nun den Flächeninhalt und Umfang von Trapezen berechnen können. Wiederholen wir dazu doch zunächst einmal die wichtigsten Eigenschaften eines Trapezes. Ein Trapez ist ein Viereck, bei dem zwei Seiten parallel zueinander sind. Das Trapez kann dabei verschiedene Formen annehmen. Es gibt zum Beispiel das allgemeine das symmetrische und das rechtwinklige Trapez. Außerdem erfüllen viele weitere Vierecke die Eigenschaften des Trapezes, wie zum Beispiel das Rechteck, das Quadrat und das Parallelogramm. Für das Schutzschild muss Dr. Kepler zunächst den Umfang von Trapezen berechnen können. Der Umfang U ist die Summe aller Seitenlängen, U ist also gleich a plus b plus c plus d. Das Gestell des Schutzschilds soll Seitenlängen von a gleich 100km und b gleich 50km, c gleich 40km und d gleich 50km haben. Den Umfang können wir nun berechnen, indem wir diese Werte in die Gleichung einsetzen. Wir erhalten also 100km plus 50km plus 40km plus 50km und das sind 240km. Den Umfang berechnen wir genauso bei den anderen Arten von Trapezen, wie zum Beispiel dem rechtwinkligen Trapez, mit U = a+b+c+d. Denn auch hier ist der Umfang die Summe der Seitenlängen. Nun benötigt Dr. Kepler aber noch den Flächen, da sie das Gestell mit dem speziellen Schutzschild ausfüllen muss. Für den Flächeninhalt eines Trapezes benötigen wir zunächst die Höhe. Diese ist der Abstand zwischen den beiden parallelen Seiten und wir nennen sie h. Wichtig ist, dass wir beim Einzeichnen der Höhe, darauf achten, dass sie senkrecht auf den beiden Seiten steht. Da diese beiden Seiten parallel zueinander sind, können wir die Höhe beliebig zwischen ihnen wählen. Den Flächeninhalt A des Trapezes berechnet man dann mit ein Halb mal in Klammern a +c mal h. Aber warum ist das so? Dies können wir geometrisch begründen: Zunächst verdoppeln wir das Trapez, drehen das zweite um 180° und fügen die beiden Trapeze zusammen. Auf diese Weise entsteht ein Parallelogramm, dessen untere und auch obere Seite a+c lang ist. Anschließend verschieben wir das Dreieck, das durch h gebildet wird auf die gegenüberliegende Seite. So erhalten wir ein Rechteck. Dieses Rechteck hat die Seitenlängen a + c und h, also den Flächeninhalt a+c mal h. Da das entstandene Rechteck den doppelten Flächeninhalt des ursprünglichen Trapezes besitzt, erhalten wir für den Flächeninhalt des Trapezes ein Halb mal in Klammern a +c mal h. Du kannst diese Formel für das allgemeine, das symmetrische und das rechtwinklige Trapez verwenden. Bestimmen wir nun den Flächeninhalt des Schutzschilds mit a= 100km, c = 40km und der Höhe von 40km. Setzen wir die Werte in die Formel ein und rechnen dies aus so erhalten wir einen Flächeninhalt von 2800 Quadratkilometern. Während das Schutzschild fertiggestellt wird, fassen wir zusammen. In einem Trapez ist der Umfang die Summe aller Seitenlängen. U ist also gleich a + b + c + d. Den Flächeninhalt eines Trapezes berechnet man mit A gleich ein Halb mal in Klammern a +c mal h. Du kannst diese Formeln für das allgemeine, das symmetrische und das rechtwinklige Trapez verwenden. Das Schutzschild wurde nun ins All geschickt und Dr. Kepler möchte checken, ob auch wirklich alles so klappt, wie sie es sich vorgestellt hat. Immer diese Campingtouristen.

27 Kommentare
  1. Toll

    Von Luca , vor etwa einem Monat
  2. Könnt ihr ein Video mit Formeln für Dreiecke und Vierecke machen

    Von ☆*:.。. o(≧▽≦)o .。.:*☆, vor 8 Monaten
  3. Super und spannend. Und die Stimme ist auch gut. Und die Geschichte

    Von Elisabeth, vor 10 Monaten
  4. Tolles Video!
    Ich habe ENDLICH alles verstanden! 😅✌️

    Von Fatima, vor 10 Monaten
  5. 🐸ImMeR dIeSe CaMpInG tOuRiStEn🐸!

    Von Lara ❤️, vor 12 Monaten
Mehr Kommentare

Flächeninhalt und Umfang des Trapezes Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Flächeninhalt und Umfang des Trapezes kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'143

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'610

Lernvideos

35'667

Übungen

32'407

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden