Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zweiter Hauptsatz der Thermodynamik

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Thermodynamik Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten

Lerntext zum Thema Zweiter Hauptsatz der Thermodynamik

Konzepte der Thermodynamik

In der Welt der Physik gibt es einige grundlegende Prinzipien, die erklären, wie Energie in unserer Umwelt funktioniert. Eines dieser Prinzipien ist der zweite Hauptsatz der Thermodynamik. Dieser Satz spielt eine große Rolle dabei, zu verstehen, warum bestimmte Prozesse in der Natur in eine Richtung ablaufen und wie effizient Maschinen sein können, die Wärme in Arbeit umwandeln. Ein Schlüsselkonzept zum Verständnis dieses Prinzips ist der Carnot-Kreisprozess.

Was ist ein Kreisprozess?

Ein Kreisprozess findet statt, wenn eine Energieform in eine andere Form umgewandelt wird und am Ende des Prozesses alles wieder in den Ausgangszustand zurückkehrt. In unserem Beispiel geht es darum, so viel mechanische Arbeit wie möglich aus der zugeführten Wärmeenergie zu gewinnen.

Die vier Arbeitstakte eines Ottomotors sind ein Beispiel für einen Kreisprozess. Nach dem Durchlaufen der vier Takte (ansaugen – verdichten – arbeiten – ausstoßen) ist der Motor wieder in seinen Ausgangszustand zurückgekehrt.

Teste dein Wissen zum Thema Thermodynamik!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Volumenarbeit und Zustandsänderungen

Um zu verstehen, wie Energie umgewandelt wird, schauen wir uns ein ideales Gas an. Ein solches Gas hat drei wichtige Eigenschaften: Druck (p)(p), Volumen (V)(V) und Temperatur (T)(T). Wenn sich eine dieser Größen ändert, kann sich auch die Energie des Gases ändern.

Für ideale Gase gilt die allgemeine Gasgleichung:

pVT=nR\dfrac{pV}{T}=n \cdot R

Dabei ist nn die Stoffmenge in mol\text{mol} und RR die universale Gaskonstante:

R=8,3145 JmolKR=\pu{8,3145 J//mol*K}

Da die Stoffmenge nn im Allgemeinen konstant bleibt, hängt es von den restlichen drei Zustandsgrößen des Gases ab, wie genau Prozesse ablaufen. Wenn beispielsweise das Volumen verringert wird, sich dabei aber die Temperatur nicht ändert, muss der Druck steigen. Wir unterscheiden nach dieser Logik folgende Zustandsänderungen:

  • Isotherme Zustandsänderungen: Die Temperatur bleibt konstant.
  • Isochore Zustandsänderungen: Das Volumen bleibt konstant.
  • Isobare Zustandsänderung: Der Druck bleibt konstant.
  • Adiabatische Zustandsänderung: Es findet kein Wärmeaustausch mit der Umgebung statt.

Die Volumenarbeit ist die Arbeit, die durch die Ausdehnung oder Kompression des Gases verrichtet wird. Wenn das Gasvolumen zunimmt, wird Arbeit verrichtet. Nimmt es ab, wird Arbeit benötigt.

Der Carnot-Kreisprozess

Der Carnot-Prozess ist ein idealer Kreisprozess, der aus vier Schritten besteht: zwei, bei denen die Temperatur gleich bleibt (isotherm), und zwei, bei denen kein Wärmeaustausch stattfindet (adiabatisch). Das Gas wird abwechselnd erhitzt und abgekühlt, wodurch es sich ausdehnt und zusammenzieht.

Der Carnot-Prozess nutzt zwei Wärmebäder: Das erste ist ein heißes Bad zum Erhitzen des Gases, wobei Arbeit verrichtet wird, während das Gas sich isotherm ausdehnt. Das zweite ist ein kaltes Bad zum Abkühlen, während das Gas sich isotherm zusammenzieht. In den adiabatischen Phasen findet kein Wärmeaustausch statt und das Gas ändert seine Temperatur, während es Arbeit verrichtet oder Arbeit an ihm verrichtet wird, ohne dass Wärme zu- oder abgeführt wird.

Die Arbeit, die dabei verrichtet wird, kann man sich als Fläche in einem Diagramm vorstellen, das Druck und Volumen zeigt.

Carnot'scher Kreisprozess

Wirkungsgrad und Effizienz

Der Wirkungsgrad η\eta einer solchen Maschine sagt uns, wie viel der zugeführten Wärme tatsächlich in nutzbare Arbeit umgewandelt wird. Er hängt von den Temperaturen der beiden Wärmequellen ab, zwischen denen die Maschine arbeitet.

η=1T1T2\eta=1-\dfrac{T_{1}}{T_{2}}

Der Wirkungsgrad ist wie die Note in einem Test. Er zeigt, wie gut die Maschine darin ist, Energie von einer Form in eine andere umzuwandeln, ohne zu viel zu verschwenden.

Der zweite Hauptsatz der Thermodynamik

Der zweite Hauptsatz der Thermodynamik sagt aus, dass Energieübertragungen immer mit einem Verlust an nutzbarer Energie verbunden sind. Es ist unmöglich, eine Maschine zu bauen, die ohne Energieverluste ewig läuft (ein sogenanntes Perpetuum mobile zweiter Art).

Zwei etwas präzisere Formulierungen des zweiten Hauptsatzes der Thermodynamik lauten so:

Es gibt keine periodisch arbeitende Maschine, die Wärmeenergie in mechanische Energie umwandelt, ohne dass ein Teil der zugeführten Wärmeenergie wieder abgegeben wird.

Es gibt keine zyklisch arbeitende Maschine, die nichts anderes bewirkt als die Entnahme von Wärme aus einem Behälter und die Verrichtung eines gleichen Betrags an Arbeit.

Der zweite Hauptsatz der Thermodynamik zeigt auch, dass in einem abgeschlossenen System die Unordnung, bekannt als Entropie, niemals abnimmt. Entropie ist ein Maß für die Unordnung oder Zufälligkeit in einem System. Ein Beispiel wäre: Ein aufgeräumtes Zimmer hat eine niedrige Entropie, während ein unordentliches Zimmer eine hohe Entropie hat.

Zusammenfassung

Der zweite Hauptsatz der Thermodynamik und der Carnot-Kreisprozess helfen uns, zu verstehen, wie Energie in der Natur umgewandelt wird und warum es Grenzen für die Effizienz von Wärmekraftmaschinen gibt. Sie zeigen, dass es immer Verluste gibt, wenn wir Energie von einer Form in eine andere umwandeln wollen.

Häufig gestellte Fragen zum Thema Zweiter Hauptsatz der Thermodynamik

Zweiter Hauptsatz der Thermodynamik Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Zweiter Hauptsatz der Thermodynamik kannst du es wiederholen und üben.
Bewertung

Ø 3.5 / 4 Bewertungen
Die Autor*innen
Avatar
sofatutor Team
Zweiter Hauptsatz der Thermodynamik
lernst du in der Sekundarstufe 5. Klasse - 6. Klasse
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'226

sofaheld-Level

6'600

vorgefertigte
Vokabeln

7'673

Lernvideos

37'137

Übungen

32'384

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden