Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Isochore Zustandsänderungen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Isochore Zustandsänderung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.4 / 5 Bewertungen
Die Autor*innen
Avatar
André Otto
Isochore Zustandsänderungen
lernst du in der Sekundarstufe 5. Klasse - 6. Klasse - 7. Klasse

Grundlagen zum Thema Isochore Zustandsänderungen

In diesem Video werde ich mit euch isochore Zustandsänderungen besprechen. Man trifft sie nicht nur in Autoklaven, sondern auch in Dingen des täglichen Lebens. Überall dort, wo Prozesse ohne Volumenänderung ablaufen, hat man damit zu tun. Nach der Einführung beschäftigen wir uns im zweiten Abschnitt mit dem Zusammenhang von Druck und Volumen. Wir stellen fest, dass der Druck veränderlich ist und mit der Temperatur in einem Zusammenhang steht (Amontons). Das Volumen ist gemäß unserer Forderung druckunabhängig. Die Bedingung V = konstant ist äquivalent zu W = 0. Das bedeutet, dass die Änderung der inneren Energie gleich der aufgenommenen bzw. abgegebenen Wärme ist. Wovon hängt diese Wärme ab? Im vierten Abschnitt lernen wir die Wärmekapazität kennen. Beispielhafte Werte für einige Gase bilden den Abschluss des Videos.

Transkript Isochore Zustandsänderungen

Hallo und herzlich willkommen. Dieses Video heißt „Isochore Zustandsänderungen“. Du kennst bereits den Ersten Hauptsatz der Thermodynamik. Nachher kennst du den Term für die Änderung der inneren Energie bei einer isochoren Zustandsänderung, Beispiele dafür und verschiedene Arten der Wärmekapazität. Der Film besteht aus fünf Abschnitten: Isochore Zustände, Druck und Volumen, Übertragung auf den Ersten Hauptsatz der Thermodynamik, Wovon hängt die Wärme ab?, Verschiedene Arten der Wärmekapazität und Isochore Zustände. Isochore Zustände und ihre Veränderung verfolgt man im Schnellkochtopf. Genauso trifft man isochore Zustände in Autoklaven, in bestimmten Reaktionsgefäßen an. Andere Beispiele für isochore Zustände sind die Inhalte von Thermosflaschen oder Mineralwasserflaschen. Allen diesen Beispielen ist gemeinsam, dass das Volumen des Systems konstant ist. Äquivalent dazu gesprochen: Die Volumenänderung ist Null. Isochore Zustände sind durch ein konstantes Volumen gekennzeichnet. Das Volumen bleibt bei isochoren Zustandsänderungen unverändert. Druck und Volumen: Isochor bedeutet: V= konstant, d.h. DELTA V = 0. Schauen wir uns einmal die Gasgleichung an: P V = n * R * T. Unter der Bedingung V = konstant erhalten wir nach P umgestellt folgenden Term. Man sieht leicht, dass n * R : V konstant ist. Also auch der Quotient p durch T ist konstant. Das ist das Gesetz von Amontons, was wir bereits kennen. Unter den genannten Bedingungen ist somit p = f (T) und beliebig. Wenn wir V über p abtragen, sieht das graphisch so aus. Eine Parallele zur p-Achse, V gleich konstant, gleichbedeutend mit DELTA V = 0. Übertragung auf den Ersten Hauptsatz der Thermodynamik: Wir erinnern uns an den Ersten Hauptsatz: Die Änderung der inneren Energie des thermodynamischen Systems ist gleich der dem System zu- oder abgeführten Wärme oder die am System oder vom System geleisteten Arbeit. Natürlich meint man immer geschlossene Systeme. Für Änderung steht das große griechische DELTA. Für die innere Energie steht das große E. „Ist gleich“ verlangt ein Gleichheitszeichen. Die Wärme hat das Symbol Q. Das „oder“ ist hier das logische, nicht ausschließende „oder“. Für Arbeit steht groß W. Kurz und bündig: DELTA E = W + Q. Eine andere Formulierung: Die innere Energie kann durch Übertragen von Arbeit oder Wärme geändert werden. Die Energie wird nicht zerstört, sondern nur in andere Formen umgewandelt. Das „oder“ ist hier wieder logisch. Der zweite Satz zeigt die enge Verwandtschaft zum Energieerhaltungssatz. Und noch eine Formulierung des Ersten Hauptsatzes: Die von einem System mit seiner Umgebung ausgetauschte Summe von Arbeit und Wärme ist gleich der Änderung der inneren Energie des Systems. Welche Formelschreibweisen nimmt nun der Erste Hauptsatz an? Ich habe hier ein geschlossenes System. Der Kolben ist in der Spritze, die Spritze ist vorne verschlossen. DELTA V = Null. Das ist äquivalent zur Aussage „W=Null“. Also, keine Volumenänderung, keine Arbeit. Das möchte ich zeigen: W = F * s. Die Arbeit ist Kraft mal Weg. P = F : A. Der Druck ist Kraft durch Fläche. Wir stellen um: F = p * A. Zwei in Eins ergibt: W = p * A * s. A *l s kann man zusammenfassen, schaut einmal. s ist der Weg, den der Kolben des Systems zurücklegt. A ist der Querschnitt des Kolbens. A * s ist somit die Volumenänderung DELTA V. Also W = p * DELTA V. Nun wird gefordert: DELTA V = Null, also W=Null. Die am oder vom System geleistete Arbeit ist Null. Damit vereinfacht sich der erste Hauptsatz der Thermodynamik. DELTA E = Q. Wir unterscheiden zwei Fälle. Erstens: Zufuhr von Wärme. Die innere Energie wächst, denn die zugeführte Wärmemenge hat ein positives Vorzeichen. Die Temperatur steigt. Es kommt zur Erwärmung. Zweitens: Abfuhr von Wärme. Die innere Energie fällt, denn die Wärme wird abgeführt. Sie hat ein negatives Vorzeichen. Die Temperatur sinkt, es kommt zur Abkühlung. Wovon hängt die Wärme ab? Bei DELTA V = 0 bzw. W = 0 haben wir folgenden Term für DELTA E erhalten: DELTA E = Q. Die Änderung der inneren Energie ist gleich der aufgenommenen oder abgegebenen Wärme. Die Änderung von E können wir nur indirekt über Q bestimmen. Aber Q lässt sich häufig nicht direkt messen. Was tun? Kehren wir zu unserem gasgefüllten Autoklaven zurück. Es zeigt sich, dass in vielen Fällen Q proportional zur Differenz von T 2 - T 1 = DELTA T ist. Den Proportionalitätsfaktor bezeichnet man mit groß C Index V. Wir erhalten eine nützliche Gleichung. CV ist die Wärmekapazität bei konstantem Volumen. Die Wärme Q hängt somit ab von erstens CV, der Wärmekapazität bei V = konstant und zweitens DELTA T, der Temperaturänderung. Zur Erinnerung: Wir sprechen immer über Gase. Daher ist auch der Index V für konstantes Volumen so wichtig. Verschiedene Arten der Wärmekapazität: Wir haben die Gleichung Q = CV * DELTA T hergeleitet. CV ist die Wärmekapazität. Wir betrachten isochore Zustandsänderungen. Also DELTA V = Null. CV hat einen großen Nachteil: Es findet keine Berücksichtigung der Stoffmenge statt. Das kann man aber schnell beheben. Wir definieren einfach: cV = C V durch m. m ist die Masse. Wir haben die spezifische Wärmekapazität definiert. Wir schreiben: CV = cV * m. Eingesetzt in die obere Gleichung für die Wärmekapazität erhalten wir: Q = cV * m * DELTA T. Das ist die Grundgleichung der Wärmelehre für isochore Zustandsänderungen. Häufig wird auch die Wärmekapazität cm,v benutzt. Wir dividieren die Wärmekapazität durch die Stoffmenge n. Die eingeführte Größe ist die molare Wärmekapazität. n, die Stoffmenge, wird in Mol angegeben. Die Wärmekapazität CV ist keine Stoffgröße, da sie von der Menge des Stoffes abhängt. cV und cv,m hingegen sind Stoffgrößen. Die Einheiten sind Joule pro Kelvin, Joule pro Kelvin und Kilogramm bzw. Joule pro Mol und Kelvin. Um ein Gefühl zu bekommen, möchte ich für Argon, Wasserstoff und Sauerstoff die bekannten Werte nennen: 310, 10100 und 656. Beim Übergang zu den molaren Wärmekapazitäten liegen die Werte näher beieinander: 12,4, 20,2 und 21,0. Ich denke, wir haben viel miteinander geleistet.

2 Kommentare
  1. Hallo Christian,

    ich schau erst mal nicht in das Video rein, einverstanden?
    Selbstverständlich ist n variabel. Bei den thermodynamischen Betrachtungen versteht man die Stoffmenge meist als PARAMETER: Ich kann n frei wählen. Habe ich mich aber (gedanklich oder real) für einen konkreten Wert entschieden, dann werde ich dann weiter mit ihm arbeiten.
    Diese Verfahrensweise hat zwei Hintergründe:
    1. Die Aussagen sind qualitativ für beliebige n > 0 gleich. Häufig hat man nur zwischen > und < bzw. steigend und fallend zu unterscheiden.
    2. Man spart sich die Betrachtung verschiedener Werte von n. Das spart Zeit, vor allem, wenn man noch grafisch darstellt.
    In der Schule MÜSSTE sich eigentlich diese Frage in entsprechenden Übungsaufgaben niederschlagen. Tut es aber nicht.
    Gründe:
    1. Tatsächlicher oder scheinbarer Zeitmangel.
    2. Aufgeblähtes Curriculum.
    3. Unlust der Schüler.
    Und beim Studium wird dann argumentiert, dass das "trivial" sei und man diesen Stoff ja "irgendwann in der Schule durchgesprochen habe".
    Im Ergebnis tauchen dann Probleme wie dieses auf. Vielen Dank für die Fragestellung.
    Alles Gute

    Von André Otto, vor mehr als 11 Jahren
  2. Warum ist (n*R)/v=const? Ich weiß ja, dass R und v jeweils konstant sind. Aber für n kann man doch verschiedene Werte einsetzen oder?

    Von Christianbiegler, vor mehr als 11 Jahren

Isochore Zustandsänderungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Isochore Zustandsänderungen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'244

sofaheld-Level

6'600

vorgefertigte
Vokabeln

7'674

Lernvideos

37'143

Übungen

32'390

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden