Ethersynthese

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Ethersynthese
Dieses Video zeigt euch alle wichtigen Wege zur Herstellung von Ethern: Von der Alkylierung bis hin zur Addition an alpha, beta-ungesätiggten Carbonylverbindungen. Insgesamt lernt ihr vier Möglichkeiten kennen, Ether herzustellen. In den letzten beiden Teilen des Videos wird euch dann die Synthese zweier sehr wichtiger Ethergruppen gezeigt – den Enol-und Phenolethern. Alle Synthesewege werden euch mit Hilfe der Reaktionsmechanismen erläutert.
Transkript Ethersynthese
Guten Tag und herzlich willkommen. Dieser Film heißt "Ethersynthese", der Film gehört zur Reihe "Reaktionsmechanismen". Als Vorkenntnisse solltest du über ein solides chemisches Schulwissen verfügen. Du weißt, was Alkane, Alkohole und Ether sind, du hast schon etwas von Carbeniumionen gehört, wenn nicht, kannst du dich im Video "Umlagerungen" darüber informieren. Mein Ziel ist es, euch wichtige Ethersynthesen und ihre Mechanismen vorzustellen. Das Video beginnt mit einer kurzen Vorstellung der Ether, dann folgen sechs verschiedene Möglichkeiten der Ethersynthese. Erstens: Alkylierung, Zweitens: Saure Hydratation von Alkenen, Drittens: Saure Dehydratisierung von Alkoholen, Viertens: Addition an α, β-ungesättigte Carbonylverbindungen, Fünftens: Enolether, Sechstens: Phenolether. Das Video wird mit einer Zusammenfassung abgeschlossen. Wir wollen zunächst kurz über die Ether sprechen. Die Ethergruppe ist die einfachste funktionelle Gruppe, sie besteht nur aus einem einzigen Sauerstoffatom. Damit der Ether zum Ether wird, ist es wichtig, dass an dem Sauerstoffatom zwei organische Gruppen R1 und R2 sitzen. R1 und R2 können aliphatisch oder aromatisch sein. Wir behandeln die Ether nicht von ungefähr, denn sie sind wichtige Synthesebausteine. Erstens: Alkylierung. Unter diesem Überbegriff werden wir a) die Williamson-Synthese, b) die Reaktion mit Dialkylsulfaten und c) die Reaktion mit Diazomethan besprechen. Kommen wir somit zur Williamson-Synthese. Ich möchte zunächst die allgemeine Reaktionsgleichung formulieren. R1-O-M ist ein Alkoholat, X-R2 ist ein Halogenalkan, daraus entsteht der Ether und es bildet sich ein Metallchlorid, ein Salz. Williamson fand diesen Syntheseweg für Ether um etwa 1850. "M" steht für Natrium, Kalium, 1/2 Magnesium oder Silber, "X" steht für die Halogene (außer Fluor), Chlor, Brom und Iod. Für die Reaktion kann man verschiedene Lösungsmittel verwenden. Zunächst einmal den Alkohol, aus dem das Alkoholat gewonnen wurde, im Überschuss, dann DMSO, Dimethylsulfoxid, oder DMF, Dimethylformamid, und dann, vielleicht weniger bekannt, Hexamethylphosphorsäuretriamid. Der Rest R1 kann sowohl aliphatisch als auch aromatisch sein, man sagt auch ein "Alkyl" oder ein "Aryl". Bei der Reaktion attackiert das Alkoholat-Ion das Halogenalkan nach nucleophilen Mechanismus. Das Halogen-Ion zieht Elektronen, daraufhin bildet sich eine positive Partialladung in Nachbarschaft. Das ist das Ziel der nucleophilen Attacke des Alkoholat-Ions. Im Ergebnis entsteht der Ether und ein Halogenid-Ion wird frei. Die Reaktion verläuft nach dem Mechanismus SN2, es ist eine nucleophile Substitution. Die Williamson-Synthese verläuft glatt, wenn R2 als Alkyl primär oder sekundär ist; mit tertiären Alkylgruppen verläuft die Reaktion nicht, warum ist das so? Nehmen wir einmal an Natriummethylat reagiert mit einem tertiär-Butylhalogenid. Anstelle des Ethers entstehen Methanol, Natriumhalogenid und ein Alken. Wir merken uns: tertiäre Alkylhalogenide liefern Alkene. Die Möglichkeit b) der Alkylierung ist die Reaktion mit Dialkylsulfaten. Gut funktioniert diese Reaktion mit Phenol. Phenol wird zunächst mit Natriumhydroxid ungesetzt, es entsteht das Natriumphenolat, Wasser entsteht als Nebenprodukt. Das Phenolat-Ion wird dann vom Dialkylsulfat elektrophil attackiert. Wie das geschieht, habe ich durch Pfeile angedeutet, sie zeigen an, in welche Richtung die Elektronen gezogen werden. Im Ergebnis geht ein Kation vom Dimethylsulfat zum Phenolat-Ion über. Es entsteht der Ether "Anisol" und ein Dimethylsulfat-Ion wird frei. Dimethylsulfat ist sehr giftig. Die dritte Möglichkeit der Alkylierung mit dem Ziel der Etherherstellung ist die Reaktion mit Diazomethan. Diazomethan ist CH2N2, das sagt uns erstmal gar nichts. Die Darstellung rechts daneben ist aussagekräftiger, es ist sozusagen ein Zwitter-Ion. Unter sauren Bedingungen entsteht das Methyl-Kation, Stickstoff wird frei. Das Methyl-Kation kann die Elektronen eines Alkohols attackieren, es bildet sich ein positiv geladenes Oxonium-Ion. Nach Wasserstoff-Ionen Abgabe ist der Ether entstanden. Zweitens: Saure Hydratation von Alkenen. Ein Alken liefert mit dem Proton eine Brønsted Säure ein Carbenium-Ion, hier ist es das Ethyl-Kation. In bekannter Weise attackiert dies die funktionelle Gruppe eines Alkohols. Es entsteht ein Oxonium-Ion. Nach Abspaltung des Protons haben wir den Ether erhalten. Drittens: Saure Dehydratisierung von Alkoholen. Hier reagiert nur ein Alkohol in Gegenwart einer Brønsted Säure. Das Molekül des Alkohols reagiert mit dem Proton zum Oxonium-Ion. Reaktion mit einem Alkholmolekül ergibt einen Übergangszustand. Wasserabspaltung ergibt wieder ein Oxonium-Ion. Nach erfolgter Deprotonierung halten wir den Ether in Händen. Die Reaktion verläuft für primäre und sekundäre bzw. tertiäre Alkohole verschieden. Im ersten Fall ist der Mechanismus SN2. Im zweiten Fall SN1. SN1 verläuft bekanntlich über Bildung eines Carbenium-Ions, bei SN2 verläuft die Reaktion über einen Übergangszustand. Und natürlich, ich möchte noch einmal betonen, handelt es sich um eine sauer katalysierte Reaktion. Viertens: Addition an α, β-ungesättigte Carbonylverbindungen. Der Alkohol reagiert im ersten Schritt hier meist mit einer Base. Es bildet sich wieder das Alkoholat-Ion. Das negativ geladene Ion reagiert mit der α, β-ungesättigten Carbonylverbindung. Nach Erfolg der Elektronenverschiebung kann man die Struktur dieser ungesättigten Carbonylverbindung auch als Zwitter-Ion angeben. Nun ist klar, wo das Alkholat-Ion angreift. Das Enolat-Ion bildet durch Elektronenverschiebung ein Carbanion, oben. Nun kommt es zur Rückbildung der Base. HB wirkt auf das Carbanion ein. Die Base, B-, wird frei und das Proton aus HB bildet zusammen mit dem Carbanion das Reaktionsprodukt. Die Ethersynthese war erfolgreich. Fünftens: Enolether. Alkine können mit Alkoholat-Ionen umgesetzt werden. Es entstehen Carbanionen. Die Carbanionen sind stärkere Basen als der Alkohol des Alkoholat-Ions, sie entreißen dem Molekül des Alkohols ein Proton. Der Enolether hat sich gebildet. Sechstens: Phenolether. Alkylarylether wie Anisol können nach Williamson synthetisiert werden. Sollen beide Substituenten aromatisch sein, so muss man sich eines anderen Verfahrens bedienen. Hier reagiert β-Bromnaphthalin mit substituierten Phenolen. Für die Reaktion benötigt man einen Kupfer-1-Komplex und eine Base. Das Lösungsmittel ist unpolar. Nach Erwärmen entsteht der gewünschte Ether. Die Reaktion trägt den Namen nach Ullmann und sie liefert Arylarylether. Fassen wir unsere Ergebnisse zusammen: Ether können durch Alkylierung nach Williamson mithilfe von Dialkylsulfat oder mithilfe von Diazomethan synthetisiert werden. Zweitens: Ein Alken reagiert mit einem Proton. Anschließend wird mit einem Alkohol umgesetzt. Drittens: Ein Alkohol bildet einen Ether in Anwesenheit einer Säure. Alkohole und α, β-ungesättigte Carbonylverbindungen bilden in Anwesenheit einer Base einen Ether. Aus Alkinen mit Alkoholat-Ionen entstehen Enolether. Und Sechstens: Arylarylether werden nach Ullmann gebildet. Ich danke für eure Aufmerksamkeit. Alles Gute. Auf Wiedersehen.
Ethersynthese Übung
-
Beschreibe die Ethersynthese.
-
Erkläre den Mechanismus der Williamsonschen Ethersynthese.
-
Bestimme die Reaktionsprodukte für die gegebenen Edukte der Ethersynthesen.
-
Formuliere den Mechanismus zur gesuchten Ethersynthese.
-
Bestimme die Merkmale, die eine Verbindung zu einem Ether machen.
-
Ermittle das Produkt der jeweiligen Reaktion.
9'152
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'604
Lernvideos
35'617
Übungen
32'360
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Stärke und Cellulose Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindung
- Wasserhärte
- Peptidbindung
- Fermentation