Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Bor

Tauche ein in die Welt des chemischen Elements Bor, einem wichtigen Bestandteil in Feuerwerken und der Halbleiterherstellung! Erfahre alles über seine Entdeckung und seine Rolle im Periodensystem. Entdecke seine vielfältigen Eigenschaften und lerne, wie Bor gewonnen und verwendet wird. Zusätzlich erhältst du Informationen zu bedeutsamen Borverbindungen. Neugierig geworden? Lass dich in das faszinierende Reich des Bors entführen!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Bor

Wie viele Außenelektronen hat Bor?

1/5
Bereit für eine echte Prüfung?

Das Bor Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.2 / 13 Bewertungen
Die Autor*innen
Avatar
André Otto
Bor
lernst du in der Sekundarstufe 3. Klasse - 4. Klasse

Beschreibung zum Video Bor

Hast du dich einmal gefragt, wie die verschiedenen Farben eines Feuerwerks zustande kommen? Die Farbe Grün kann beispielsweise durch Verbindungen des Elements Bor erzeugt werden. Welche Eigenschaften das Element Bor aufweist, wo du es im Periodensystem der Elemente finden kannst und wer Bor eigentlich entdeckt hat, erzählt dir dieses Video. Außerdem lernst du die wichtigsten Reaktionen des Bors kennen sowie weitere Anwendungsbereiche von Borverbindungen. Die Übungsaufgaben und Arbeitsblätter helfen dir dabei, dein neues Wissen anschließend zu testen.

Grundlagen zum Thema Bor

Das Element Bor in der Chemie

Erinnerst du dich an das letzte Feuerwerk? Wenn einige Kugeln und Sterne grün geleuchtet haben, dann steckte Bor dahinter. Bor ist das chemische Element mit dem Symbol $\ce{B}$. Du wirst sehen, die Bor-Chemie ist sehr vielfältig.

Entdeckung und Vorkommen von Bor

Die beiden französischen Wissenschaftler Gay-Lussac und Thénard entdeckten das Element Bor im Jahr 1808.
Bor zählt zu den seltenen Elementen. Die Erdhülle enthält nur 0,0016 Prozent Bor. Es liegt hauptsächlich in Form von Boraten vor. Etwa 70 Prozent der bekannten Boratvorkommen auf der Erde liegen in der Türkei. Abbauwürdige Minerale sind vor allem die Borate Borax, Kernit und Colemanit.

Bor
Was ist Bor? Wie sieht Bor aus?

Wusstest du schon?
Borax, eine Verbindung von Bor, hat eine lange Geschichte im Haushalt. Schon im 19. Jahrhundert wurde es als Reinigungsmittel und Insektenschutzmittel eingesetzt. Heute findest du es oft in Spielzeugschleim, auch bekannt als „Slime“, was ihn schön dehnbar und klebrig macht.

Die Stellung von Bor im Periodensystem

Das Element Bor hat im Periodensystem der Elemente die Ordnungszahl $5$. Es steht in der zweiten Periode und gehört zu den Elementen der dritten Hauptgruppe. Bor ist ein Halbmetall. In den meisten chemischen Reaktionen mit anderen Elementen gibt Bor drei Elektronen ab. Seine Oxidationszahl ist damit in der Regel $\text{+III}$.

Eigenschaften von Bor

Steckbrief  Bor
$\text{Atommasse}$ $10,8\, \pu{\frac{g}{mol}}$
$\text{Dichte}$ $\rho = 2,46\, \pu{\frac{g}{cm^{3}}}$
$\text{Schmelzpunkt}$ $\text{Smp.} = 2\,076\, ^\circ\pu{C}$ unter Normaldruck
$\text{Siedepunkt}$ $\text{Sdp.} = 3\,927\, ^\circ\pu{C}$ unter Normaldruck
$\text{Härte}$ $\text{sehr hart, auf der Mohshärte-Skala:}~9,3$
$\text{Farbe}$ $\text{schwarz-braun}$

Bor ist schwarz-braun und sehr hart. Auf der Mohs-Skala hat es eine Härte von $9,3$. Somit ist es härter als der Edelstein Rubin. Dabei ist Bor sehr leicht. Seine Dichte ist geringer als die Dichte von Aluminium. Bor ist hochschmelzend. Es schmilzt bei einer Temperatur von $2\,076\, ^\circ\pu{C}$. Das ist entschieden höher als die Werte von Eisen, Kupfer oder Silber. Bor kann als kristallines Bor vorliegen, aber auch nichtkristallin als amorphes Bor.

Fehleralarm
Es ist ein weit verbreiteter Fehler, zu glauben, dass das Element Bor ein Metall ist. Tatsächlich ist Bor ein Halbmetall, also eine Substanz mit Eigenschaften zwischen denen von Metallen und Nichtmetallen.

Bor reagiert nicht mit verdünnten Säuren, auch nicht mit kochender Salzsäure ($\ce{HCl}$) oder Flusssäure ($\ce{HF}$). Mit Phosphorsäure ($\ce{H3PO4}$) reagiert es nur bei Temperaturen von mehr als $600\, ^\circ\pu{C}$. Bor reagiert jedoch mit Salpetersäure ($\ce{HNO3}$) und mit Königswasser, einem Gemisch aus Salzsäure und Salpetersäure.
Mit den Halogenen Fluor, Chlor und Brom bildet Bor Bortrihalogenide des Typs $\ce{BX3}$ mit $\ce{X} = \ce{F}$, $\ce{Cl}$ oder $\ce{Br}$.

Gewinnung und Herstellung von Bor

Amorphes Bor gewinnt man aus der Reduktion von Bortrioxid ($\ce{B2O3}$) mit Magnesium ($\ce{Mg}$):
$\ce{B2O3 + 3 Mg -> 2 B + 3 MgO}$

Darüberhinaus gibt es weitere, spezielle Verfahren, um hochreines und kristallines Bor zu gewinnen.

Beispiele für die Verwendung von Bor

  • Bor kommt in Feuerwerken zum Einsatz zur Erzeugung einer grünen Flammenfärbung.
  • Bei der Halbleiterherstellung wird Silicium mit Bor versetzt (dotiert), um elektronische Eigenschaften zu beeinflussen.
  • In der Kernphysik dient Bor als Neutronenquelle, wenn es mit Alphateilchen beschossen wird.
  • Bor ist Bestandteil der Eisen-Bor-Legierung Ferrobor. Aus Ferrobor fertigt man Steuerstäbe, die in Kernkraftwerken zum Einsatz kommen.

Kontrovers diskutiert:
Aktuellen Forschungsergebnissen zufolge könnte Bor in neuen Hightech-Materialien für die Elektronikindustrie eine Schlüsselrolle spielen. Einige Wissenschaftlerinnen und Wissenschaftler betonen, dass Bor-basierte Materialien bereits Spitzenergebnisse zeigen, während andere skeptisch sind und auf die hohen Kosten und die komplexe Herstellung hinweisen. Was denkst du?

Wichtige Borverbindungen und ihre Verwendung

  • Borax kommt als Mineral natürlich vor und ist chemisch gesehen Natriumborat ($\ce{Na2B4O7}$). Je nach Wassergehalt gibt es unterschiedliche Varianten des Minerals. Wird etwas Borax in einer Flamme geschmolzen, entsteht eine Boraxperle. Da einige Metalle in einer Boraxperle eine charakteristische Flammenfärbung erzeugen, dient sie als Nachweis für diese Metalle.
    Waschmittel enthalten bleichende Perborate, die aus Borax hergestellt werden.
  • Bortrioxid ist ein weißes Pulver mit der Formel $\ce{B2O3}$, das durch die Verbrennung von Bor mit Luftsauerstoff erhalten wird. Es dient der Borherstellung durch Reduktion mit Magnesium oder Aluminium.
  • Borsäure ($\ce{H3BO3}$) bildet sich aus Borax bei Zugabe von Salzsäure. Borsäure ist selbst eine sehr schwache Säure. Sie wird u. a. bei der Herstellung keramischer Produkte benötigt.
  • Borcarbid ($\ce{B4C}$) ist sehr hart mit einer Mohshärte von 9,3. Es wird durch Reduktion von Bortrioxid mit Kohlenstoff hergestellt:
    $\ce{2 B2O3 + 7 C \xrightarrow{2\,500 ^\circ\pu{C}} B4C + 6 CO}$
  • Bornitrid ($\ce{BN}$) gewinnt man aus den Elementen Bor und Stickstoff bei einer Temperatur von $1\,000\, ^\circ\pu{C}$. Bornitrid ist ein harter Werkstoff, der Wärme gut leitet sowie säurebeständig und gut zu bearbeiten ist.
  • Borsilicid ($\ce{B2Si3}$) entsteht aus der Reaktion mit Silicium und ist ebenfalls ein harter Werkstoff.
  • Boride bilden sich aus verschiedenen Metallen und Bor. Sie finden spezielle Anwendungen, so ist beispielsweise Magnesiumdiborid ($\ce{MgB2}$) ein technisch interessanter Supraleiter.
  • Supersäuren: Es gibt borhaltige Supersäuren, die noch viel stärker sind als konzentrierte Schwefelsäure. Sie werden bei speziellen Synthesen eingesetzt.
  • Diboran ($\ce{B2H6}$) ist eine sehr giftige und hochentzündliche Verbindung aus Bor und Wasserstoff. Sie wurde früher als Raketentreibstoff in Erwägung gezogen, wird mittlerweile aber eher als Katalysator und in der Gummiherstellung verwendet.

Kennst du das?
Vielleicht hast du schon einmal bemerkt, wie dein Geschirr in der Spülmaschine blitzsauber herauskommt. Das liegt an den Borverbindungen in den Reinigungsmitteln, die Fett und Schmutz effizient lösen. Bor hilft also nicht nur in der Chemie, sondern auch in deinem Alltag, indem es dafür sorgt, dass dein Geschirr strahlend sauber wird.

Es gibt noch viele weitere Anwendungen von Borverbindungen: Borosilicatglas ist hochwertiges Laborglas. Bor findet man in Pflanzenschutzmitteln. Es ist aber auch in starken Magneten enthalten. Borverbindungen werden als Flussmittel beim Löten eingesetzt. Sie sind Bestandteil von Holzschutzmitteln und von Kühlschmierstoffen beim Zerspanen. Sogar militärische Panzerungen werden daraus hergestellt.

Kennst du ein Element, das noch mehr kann als Bor?

Ausblick – das lernst du nach Bor

Bereite dich auf die Eigenschaften von Metallen vor. Weiterführende Themen wie die Verwendung von Metallen und Schrott oder Wertstoff sind auch eine tolle Möglichkeit, dein Wissen zu erweitern.

Zusammenfassung zum Element Bor

  • Bor ist das fünfte Element im Periodensystem. Es ist ein Halbmetall, das sich durch eine besonders hohe Härte bei gleichzeitig geringer Dichte auszeichnet.
  • Als elementarer Reinstoff kommt Bor in Feuerwerk, Halbleitern und in Kernkraftwerken zum Einsatz.
  • Bor-Verbindungen sind vielfältig und dementsprechend vielseitig einsetzbar. Am bekanntesten und wichtigsten sind unter anderem die Anwendungen im Borosilicatglas, in starken Magneten sowie in Perboraten als Bleichmittel, Waschmittel oder Dämmstoff.

Du findest hier auch Übungen und Arbeitsblätter. Beginne mit den Übungen, um gleich dein umfangreiches Wissen über Bor aus dem Text zu testen.

Häufig gestellte Fragen zum Thema Bor

Was ist Bor?
Wie sieht Bor aus?
Wie viele Protonen hat Bor?
Wie viele Neutronen hat Bor?
Wie viele Außenelektronen hat Bor?
Wie viele Schalen hat Bor?
Was kann man mit Bor machen?
Was ist der Unterschied zwischen Bor und Borax?
Was bewirkt Bor im Körper?
Teste dein Wissen zum Thema Bor!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Bor

  Guten Tag und Herzlich Willkommen, In diesem Film geht es um das chemische Element Bor. Der Film gehört zu der Reihe: Elemente. An Vorkenntnissen solltest du die Chemie bis Basen, Säuren und Salze recht sicher beherrschen. Im Video möchte ich dir einen Überblick über Bor und seine Verbindungen geben.

Der Film besteht aus 9 Abschnitten: 1. Entdeckung 2. Vorkommen 3. Stellung im Periodensystem der Elemente 4. Eigenschaften 5. Reaktionen 6. Wichtige Verbindungen 7. Verwendung des Elements 8. Verwendung der Borverbindungen 9. Zusammenfassung

  1. Entdeckung: Entdeckt wurde Bor 1808 und zwar durch die beiden französischen Wissenschaftler Gay-Lussac und Thénard.

  2. Vorkommen: Die Erdhülle besitzt einen Anteil von 0,0016% Bor. Abbauwürdige Minerale sind: Borax, Kernit und Colemanit. Die größten Boratvorkommen der Welt besitzt die Türkei mit etwa 70%.

  3. Stellung im Periodensystem der Elemente Im Periodensystem der Elemente befindet sich Bor an dieser Stelle. Es ist Element der 3. Hauptgruppe. Bei Bor handelt es sich um ein Halbmetal. Die wichtigste Oxidationszahl des Bors ist +3. Sein chemisches Symbol ist B.

  4. Eigenschaften Bor ist ein schwarzes Halbmetal. Es ist sehr hart. Nach Mohs hat es eine Härte von 9,3. Somit ist es härter als der Edelstein Rubin. Dabei ist Bor sehr leicht. Seine Dichte von 2,5 g/cm³ ist geringer als die Dichte des Aluminiums. Bor ist hoch schmelzend. Es schmilzt bei 2076°C. Das ist entschieden höher als die Werte von Eisen, Kupfer oder Silber.

  5. Reaktionen Diesen Reaktionspfeiligel wollen wir ausfüllen. Bor reagiert mit verdünnten Säuren nicht. Auch kochende Salzsäure oder Flusssäure können ihm nichts anhaben. Damit Phosphorsäure reagiert, bedarf es Temperaturen von höher als 600°C. Bor reagiert sowohl mit Salpetersäure als auch Königswasser. Man kann Bor verbrennen. Es entsteht Bortrioxid. In der Rotglut wirkt es oxidierend auf Wasser, Kohlstoffdioxid und Siliciumdioxid. Mit Stickstoff entsteht Bornitrid. Mit Silicium Borsilicid. Metalle bilden mit Bor ebenfalls Verbindungen. Man nennt sie Boride. Mit dem Halogen bildet Bor Bortrihalogenide.

  6. Wichtige Verbindungen Als 1. Borax, das natürlich vorkommt und das man auch reinigen kann. Die Formel Na2B4O7. Die Boraxperle wird für den Nachweis verschiedener Metalle verwendet. Bortrioxid, ein weißes Pulver mit der Formel B2O3. Es dient der Borherstellung durch Reduktion mit Aluminium.  Borsäure, H3BO3. Die Säure ist folgendermaßen hergestellt: Man nimmt Borax und lässt darauf Salzsäure einwirken. Es entsteht Borsäure unter Freisetzung von Natriumchlorid. Borsäure schreibt man manchmal so, als ob es sich um eine Base handelt. Tatsächlich ist Borsäure eine sehr schwache Säure.  Borcarbid, B4C. Der Stoff ist sehr hart mit einer Mohshärte von 9,3. Borcarbid wird durch Reduktion von Bortrioxid mit Kohlestoff hergestellt. Bei 2500°C entstehen die gewünschte Verbindung und Kohlenstoffmonoxid. Bornitrid: Die Verbindung mit der Formel BN gewinnt man aus den Elementen bei einer Temperatur von 1000°C. Bornitrid ist ein wichtiger Werkstoff. Es hat eine geringe Dichte, ist gut Wärme leitend, reagiert weder mit Säuren, noch wird es von sauerstoffhaltigen Stoffen angegriffen und außerdem ist es gut bearbeitbar. Bor ist in einigen Supersäuren enthalten. Aus Bortrifluorid und Fluorwasserstoff entsteht eine Supersäure. Außerdem bildet es das Gerüst für eine Carboboran-Supersäure. Sie wurde um 2000 synthetisiert.

  7. Verwendung des Elements Bor ist Bestandteil des Ferrobors. Aus ihm fertigt man Steuerstäbe für die Kernspaltung. Im Messing dient es der Kornfeinerung. Airbags sind mit einem Bornitrat-Zünder versehen. Bor ist ein gutes Konstruktionsmaterial für steife Konstruktionen, wie zum Beispiel den Jagdflieger F117. In Feuerwerken verwendet man es wegen der grünen Farbe. Außerdem dient Bor der Dotierung von Silicium. Man setzt Bor für Randschichtverhärtung ein. Bor kann als Neutronenquelle dienen, wenn es mit Alphateilchen beschossen wird.

  8. Verwendung der Borverbindungen Borverbindungen trifft man in Lichtwellenleitern. Waschmittel enthalten bleichende Perborate. Borosilicatglas ist hochwertiges Laborglas. Bor findet man in Pflanzenschutzmitteln. Es ist in den Supermagneten enthalten. Für Kopfhörer benötigt man es. Aus Boroxin werden Elektrolyte gefertigt. Diboran wurde früher als Raketentreibstoff verwendet. Borverbindungen sind Bestandteil von Holzschutzmitteln. Genauso wie Kühlschmierstoffe beim Zerspanen. Borverbindungen werden als Flussmittel beim Löten eingesetzt. Und schließlich werden Panzerungen daraus hergestellt. Und das waren durchaus noch nicht alle Beispiele.

  9. Zusammenfassung Sowohl das Reinelement Bor als auch seine Verbindungen sind für die Zivilisation unabkömmlich.

Ich hoffe, es hat euch ein bisschen Spaß bereitet. Ich wünsche euch alles Gute. Auf Wiedersehen.

2 Kommentare
  1. Gutes Video.

    Von Prikutec, vor etwa 4 Jahren
  2. Mal wieder ein super hilfreiches und gutes Video!
    (Kleine Anmerkung: Bei Aufgabe zwei war das Feuerwerk für mich persönlich nur sehr schwer zu erkennen. Das Bild sah eher wie eine optische Illusion aus...)

    Von Bade Connect, vor fast 9 Jahren

Bor Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Bor kannst du es wiederholen und üben.
  • Bestimme die Eigenschaften von Bor.

    Tipps

    Der Edelstein Rubin ist weicher als Bor.

    Erinnere dich an den Vergleich der Dichten von Bor und Aluminium.

    Lösung

    Aus den Eigenschaften des Bors ergeben sich verschiedenste Verwendungsmöglichkeiten.

    Durch seine große Zugfestigkeit und Härte eignet es sich zum Beispiel sehr gut für den Bau von Kampfflugzeugen.

    Bor wird den Halbmetallen zugeordnet. Dies kann man zum einen aus der Lage des Elementes im PSE erkennen: Bor liegt zwischen Metallen und Nichtmetallen. Ein weiteres Merkmal von Halbmetallen ist, dass ihre Leitfähigkeit bei Raumtemperatur gering ist. Sie nimmt jedoch mit steigender Temperatur stark zu.

  • Gib an, wo Bor zur Anwendung kommt.

    Tipps

    Bedenke die Eigenschaften von Bor.

    Lösung

    In der Pyrotechnik werden die Borverbindungen Borcarbid und Trinitroethylborat genutzt. Durch das Abbrennen des Borcarbids kann Sauerstoff mit Bor reagieren und grünes Licht wird abgestrahlt. Diese Mischung ersetzt das Vorgängergemisch Barium/Perchlorat, da es wesentlich ungefährlicher ist.

    Airbags: Prallt man beispielsweise auf ein anderes Auto auf, dann wird ein Detonationsmechanismus ausgelöst. Das enthaltene Bleiazid bringt dann die Komponenten Natriumnitrat und Bor zur explosionsartigen Reaktion. In nur wenigen Sekunden bläst sich der Airbag dann mit dem freiwerdenden Stickstoff auf.

    Bor ist sehr hart und wird in dieser Eigenschaft nur von Diamant übertroffen. Die Zugfestigkeit ist ebenfalls hoch, d.h. dieser Werkstoff bricht oder reißt erst bei einer hohen mechanischen Zugspannung. In beiden Eigenschaften liegt also die Verwendung für Kampfflugzeuge begründet.

    In Düngern sollte das Element nicht enthalten sein. Ist die Konzentration zu hoch, so werden Pflanzen krank und können absterben. Ab einer Menge von 100 mg pro Tag kann Bor beim Menschen Vergiftungen hervorrufen.

    Bor ist bei Raumtemperatur fest und kann somit nicht das Gas im Inneren des Ballons sein.

    Beim Vorgang der Kornfeinung wird die Festigkeit eines metallischen Werkstoffes erhöht, wobei dieser trotzdem gut verformbar ist. Dieser Ansatz wird gern in der Automobilindustrie genutzt, da so dünne Bleche verbaut werden können.

  • Stelle die Reaktionsgleichung zur Herstellung von Borphosphat auf.

    Tipps

    Denke daran, dass man ausgleichen muss.

    Lösung

    Da Phosphate die Salze der Phosphorsäure sind, lässt sich der Vorgabe entnehmen, dass diese Säure das erste Edukt ist. Die Summenformel $H_3PO_4$ sollte dabei nicht mit der phosphorigen Säure ($H_3PO_3$) verwechselt werden.

    Beim Betrachten von Edukt- und Produktseite fällt auf, dass auf Seite der Produkte weitere 6 Wasserstoff- und 3 Sauerstoffatome benötigt werden. Daraus ergibt sich die Lösung: $3~H_2O$.

  • Ermittle die Reaktionsgleichung zur Borherstellung.

    Tipps

    Überlege dir, welche Edukte und Produkte an der Reaktion beteiligt sind.

    Nutze falls nötig ein Tafelwerk, um die Oxidationszahlen zu bestimmen.

    Lösung

    Bortrioxid lässt sich durch verschiedene unedle Metalle zu reinem Bor reduzieren. Dazu kann auch Magnesium verwendet werden.

    Von Bortrioxid lässt sich auf die Anzahl der Boratome im Produkt schließen: $B :~2$

    Da Magnesium in der zweiten Hauptgruppe steht und somit zwei Außenelektronen abgeben kann, reagiert es mit einem Sauerstoffatom, welches zwei Elektronen aufnimmt, zu $MgO$.

    Da die Anzahl der Sauerstoffatome auf beiden Seiten des Reaktionspfeils gleich sein muss, ergibt sich für $MgO$ die Stöchiometriezahl 3.

    Um die gleiche Anzahl Magnesiumatome auf der Eduktseite zu haben, muss die Lücke mit $3~Mg$ gefüllt werden.

  • Beschreibe die folgenden Borverbindungen.

    Tipps

    Überlege dir, wie die Summenformeln der Verbindungen lauten.

    Lösung

    Natürliche Vorkommen für Borax ($NA_2B_4O_7$) sind sogenannte Boraxseen. Diese Verbindung kann zur Herstellung von Borverbindungen genutzt werden. Sie findet ebenfalls Anwendung in Seifen, Wasserenthärtern oder in Keramiken.

    Bortrioxid ($B_2O_3$) reagiert mit Wasser zu Borsäure und wird bei Reduktion mit Wasserstoff zu Bor.

    Borsäure ($H_3BO_3$) kann wie eine Base beschrieben werden. Mit zunehmender Konzentration löst sich die Säure in Wasser besser. In Verbindung mit konzentrierter Schwefelsäure und Methanol bildet sich ein Ester. Dieser verbrennt mit grüner Flamme.

    Borcarbid ($B_4C$) ist sehr hart und chemisch sehr inert. Es findet Anwendung als Panzerungsmaterial oder als Schneidstoff in der Werkzeugbearbeitung.

    Bornitrid ($BN$) zeichnet sich durch seine hohe Härte aus. Daher kommt es als Schneidstoff in der Stahlbearbeitung zum Einsatz.

    Als Supersäure bezeichnet man Säuren, die stärker sind als konzentrierte Schwefelsäure. Dies ermöglicht Chemikern, Reaktionen durchzuführen, die vor der Entdeckung dieser Supersäuren undenkbar waren.

  • Formuliere die Reaktionsgleichung zur Herstellung von Bortrichlorid.

    Tipps

    Wie lauten die Summenformeln der Edukte?

    Lösung

    Die Borhalogenide werden häufig in der Synthesechemie eingesetzt und können aus Boroxid und dem Halogen hergestellt werden. Bei dieser Reaktion muss zusätzlich Kohlenstoff zugefügt werden, der den frei werdenden Sauerstoff aus dem Boroxid bindet. Nun kann die Reaktionsgleichung aufgestellt werden:

    • Bortrioxid hat die Summenformel $B_2O_3$ , Kohlenstoff $C$ und Chlor $Cl_2$.
    • Durch $B_2O_3$ ergibt sich, dass eine 2 vor Bortrichlorid stehen muss.
    • Auf der Produktseite zählt man nun 6 Chlor, d.h. auf der Eduktseite müssen $3~Cl_2$ stehen.
    • Aus der Anzahl der Sauerstoffatome im Bortrioxid ergibt sich die Lösung $3~CO$ für die Produktseite und somit auch $3~C$ auf der Seite der Edukte.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'905

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'232

Lernvideos

35'802

Übungen

32'564

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden