Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Eigenschaften der Alkane

Heute erklären wir alles über die Alkane. Die Alkane sind eine wichtige Gruppe der Kohlenwasserstoffe. Sie stellen sich speziell durch eine Einfachbindung zwischen allen Kohlenstoffatomen und eine allgemeine Summenformel dar. Isomerie und Verzweigungen sind auch möglich. Was für eine Polarisierung haben die Alkane? Wie lösbar sind sie? Die Antwort wartet auf dich im folgenden Artikel.

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Alkane Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.1 / 29 Bewertungen
Die Autor*innen
Avatar
Team Digital
Eigenschaften der Alkane
lernst du in der Sekundarstufe 3. Klasse - 4. Klasse - 5. Klasse

Grundlagen zum Thema Eigenschaften der Alkane

Was sind Alkane?

Die Chemie der Alkane ist ein großes Gebiet der organischen Chemie, das sehr systematisch beschrieben werden kann, sodass wir es gut lernen können. Die Frage Was sind Alkane? lässt sich im Sinne einer Definition wie folgt beantworten:

Alkane sind eine Gruppe von Kohlenwasserstoffen. Die Moleküle der Verbindungen setzen sich nur aus den Elementen Kohlenstoff (C)\left( \ce{C} \right) und Wasserstoff (H)\left( \ce{H} \right) zusammen. Verschiedene Alkane unterscheiden sich in der Anzahl der gebundenen Kohlenstoff- und Wasserstoffatome, aber in allen Alkanen liegen ausschließlich Einfachbindungen zwischen den Atomen im Molekül vor.

Alkane gehören zu den Kohlenwasserstoffen. Schon aus dem Namen lässt sich ableiten, dass Kohlenwasserstoffe aus den chemischen Elementen Kohlenstoff (C)\left( \ce{C} \right) und Wasserstoff (H)\left( \ce{H} \right) bestehen. Sie stellen sozusagen die Elternverbindungen aller organischen Verbindungen dar, denn sie bilden das Grundgerüst aller Moleküle in der organischen Chemie.

Kohlenwasserstoffe gewinnt man aus Kohle, Erdöl oder Erdgas. Wir Menschen stellen aus ihnen Lösungsmittel, Kunststoffe, Detergenzien (Wasch- und Reinigungsmittel) und Arzneimittel her. Ein Teil der Kohlenwasserstoffe sind die Alkane. Darüber hinaus gibt es auch noch andere Kohlenwasserstoffe.

Wie sind Alkane aufgebaut?

Die Moleküle der verschiedenen Alkane setzen sich aus zwei Elementen zusammen: Kohlenstoff (C)\left( \ce{C} \right) und Wasserstoff (H)\left( \ce{H} \right). Kohlenstoff ist vierbindig, das heißt, alle Kohlenstoffatome im Molekül bilden vier Bindungen aus. In Alkanen treten keine Mehrfachbindungen auf, es gehen also von jedem Kohlenstoffatom vier Einfachbindungen aus. Diese können jeweils zwischen zwei Kohlenstoffatomen (CC)\left( \ce{C–C} \right) oder zwischen einem Kohlenstoff- und einem Wasserstoffatom (CH)\left( \ce{C–H} \right) bestehen. Alkane sind gesättigte Kohlenwasserstoffe, da es in ihren Molekülen keine Mehrfachbindungen und keine freien, nichtbindenden Elektronenpaare gibt. Die besondere Elektronenkonfiguration, die die Kohlenstoffatome dabei annehmen, wird sp3{sp}^3-Hybridisierung genannt.
Alkane sind außerdem nicht-cyclisch, das heißt, die Moleküle der Verbindungen basieren auf einfachen Ketten von Kohlenstoffatomen. Diese können allerdings verzweigt sein.
Auf der einen Seite gibt es also die unverzweigten Alkane, die nn-Alkane, deren Moleküle einfache Ketten von Kohlenstoffatomen mit angehängten Wasserstoffatomen sind. Auf der anderen Seite gibt es verzweigte Alkane, die ii-Alkane (oder Isoalkane), deren Moleküle Verzweigungen enthalten, sodass in ihnen auch Kohlenstoffatome vorkommen, die mehr als zwei weitere Kohlenstoffatome als Nachbarn haben.

Teste dein Wissen zum Thema Alkane!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Allgemeine Summenformel und Strukturformel der Alkane

In der nachfolgenden Abbildung sind die Strukturformeln der drei einfachsten Alkane Methan (CHX4)\left( \ce{CH4} \right), Ethan (CX2HX6)\left( \ce{C2H6} \right) und Propan (CX3HX8)\left( \ce{C3H8} \right) dargestellt. Bei genauerer Betrachtung stellt man fest, dass zwischen Methan und Ethan eine Differenz von CHX2\ce{–CH2} besteht, genau wie zwischen Ethan und Propan. Die CHX2\ce{–CH2}‑Gruppe ist die sogenannte Methylen‑Gruppe. Aus dieser Systematik folgt eine Art von Alkan-Liste, die sich theoretisch immer weiter fortführen lässt.
Die allgemeine Summenformel der Alkane lautet danach:

CnH2n+2   mit  n=1,2,3,...\ce{C}_{n} \ce{H}_{2n+2}~~~\text{mit}~~n = 1,2,3, ...

Methan, Ethan und Propan

Homologe Reihe der Alkane

Die Fortführung der Systematik, nach der die ersten drei Alkane Methan, Ethan und Propan gebildet werden, nennt man die homologe Reihe der Alkane. Theoretisch ist diese Reihe für Moleküle aus hunderten von Kohlenstoffatomen fortführbar, aber üblicherweise reicht es aus, die ersten zehn Vertreter zu kennen. Die Bezeichnungen dieser Alkane solltest du allerdings auswendig lernen. In der folgenden Abbildung sind sie, jeweils mit der zugehörigen Strukturformel, zusammengefasst.

Homologe Reihe der Alkane)

Eine vereinfachte Schreibweise der jeweiligen Strukturformeln findest du außerdem in der folgenden Tabelle. Hier wird auch noch einmal deutlich, dass sich die Alkane der Reihe nach um jeweils eine Methylen‑Gruppe unterscheiden.

Name Summenformel vereinfachte Strukturformel
Methan CHX4\ce{CH4} CHX4\ce{CH4}
Ethan CX2HX6\ce{C2H6} CHX3CHX3\ce{CH3-CH3}
Propan CX3HX8\ce{C3H8} CHX3CHX2CHX3\ce{CH3-CH2-CH3}
Butan CX4HX10\ce{C4H10} CHX3CHX2CHX2CHX3\ce{CH3-CH2-CH2-CH3}
Pentan CX5HX12\ce{C5H12} CHX3(CHX2)X3CHX3\ce{CH3-(CH2)3-CH3}
Hexan CX6HX14\ce{C6H14} CHX3(CHX2)X4CHX3\ce{CH3-(CH2)4-CH3}
Heptan CX7HX16\ce{C7H16} CHX3(CHX2)X5CHX3\ce{CH3-(CH2)5-CH3}
Octan CX8HX18\ce{C8H18} CHX3(CHX2)X6CHX3\ce{CH3-(CH2)6-CH3}
Nonan CX9HX20\ce{C9H20} CHX3(CHX2)X7CHX3\ce{CH3-(CH2)7-CH3}
Decan CX10HX22\ce{C10H22} CHX3(CHX2)X8CHX3\ce{CH3-(CH2)8-CH3}

Strukturformeln der Alkane im Detail

Die Summenformel eines Moleküls sagt noch wenig über dessen dreidimensionale Struktur aus. Auch die Strukturformeln, wie sie in der Tabelle stehen, können eine dreidimensionale Darstellung nur andeuten. Die Struktur der Alkane weist zum Glück sehr viele Regelmäßigkeiten auf:

  • Alle Kohlenstoffatome bilden vier Einfachbindungen aus. Damit sind alle Kohlenstoffatome in Alkanen sp3{sp}^3-hybridisiert.
  • Alle Bindungswinkel betragen etwa 109109^\circ. Damit entspricht die Bindungsgeometrie um die Kohlenstoffatome der geometrischen Form eines Tetraeders mit dem Kohlenstoffatom im Zentrum. Das können wir nur in dreidimensionalen Darstellungen gut erkennen.

Diese Strukturmerkmale haben alle Alkane. Beim Methan (CHX4)\left( \ce{CH4} \right) kann man die Tetraederform besonders einfach erkennen:

Methan Molekülstruktur

Die anderen (unverzweigten) Alkane der homologen Reihe kannst du dir als Ketten von solchen Tetraedern vorstellen, wobei auf jeweils zwei Ecken der Tetraeder ebenfalls Kohlenstoffatome sitzen (ausgenommen der erste und letzte Tetraeder der Kette – dort sitzt nur noch auf einer Ecke ein Kohlenstoffatom).

Verzweigte Alkane

Längere Alkane, ab vier Kohlenstoffatomen, können als weiteres Strukturmerkmal Verzweigungen aufweisen. Das heißt, dass die gleiche Summenformel für unterschiedliche Molekülstrukturen stehen kann. Das nennt man die Isomerie der Alkane. Schauen wir uns das am Beispiel des Butans mit vier Kohlenstoffatomen an:

Butan nn-Butan Isobutan =
2-Methylpropan
Summenformel lineare Kettenstruktur verzweigte Struktur
CX4HX10\ce{C4H10} n-Butan iso-Butan

Beide Butan-Moleküle haben die gleiche Summenformel (CX4HX10)\left( \ce{C4H10} \right), sie sind aber nicht identisch! Bei der kettenförmigen, linken Verbindung handelt es sich um nn-Butan, bei der verzweigten, rechten um Isobutan (auch: ii-Butan). Isobutan nennt man mit systematischem Namen 2-Methylpropan. Wenn gleiche Summenformeln, aber verschiedene Strukturformeln vorliegen, so spricht man von Isomeren. Wenn es sich um verschiedene Stellungen der einzelnen Atome im Molekül handelt, sind das, wie hier, Konstitutionsisomere.
Höhere Alkane mit noch mehr Kohlenstoffatomen als im Butan weisen noch mehr Konstitutionsisomere auf. Für die ersten drei Alkane – Methan, Ethan und Propan – gibt es aber nur jeweils eine mögliche Struktur. Wir können auch sagen: Die ersten drei Vertreter der Alkane haben keine Isomere.

Auch einzelne Kohlenstoffatome in einem Molekül können unterschiedlich bezeichnet werden, um auf den Bindungszustand des jeweiligen Atoms einzugehen.

  • Ein primäres Kohlenstoffatom hat nur ein weiteres Kohlenstoffatom als Bindungspartner. Die anderen drei Bindungspartner sind Wasserstoffatome. Dies trifft auf die Kohlenstoffatome zu, die sich am Anfang und am Ende einer Molekülkette befinden – die endständigen Kohlenstoffatome.
  • Ein sekundäres Kohlenstoffatom hat zwei weitere Kohlenstoffatome als Nachbarn bzw. Bindungspartner. Dies trifft auf die Kohlenstoffatome innerhalb einer unverzweigten Kette zu. Sie stellen die einzelnen Kettenglieder dar.
  • Ein tertiäres Kohlenstoffatom hat drei weitere Kohlenstoffatome als Nachbarn. Dies trifft auf Kohlenstoffatome zu, die an einem Verzweigungspunkt einer Kette sitzen.
  • Ein quartäres Kohlenstoffatom ist von vier weiteren Kohlenstoffatomen umgeben. Von solch einem Verzweigungspunkt gehen zwei Verzweigungen (insgesamt also vier Kettenstränge) ab.

Im oben dargestellten Isobutan ist beispielsweise das mittlere Kohlenstoffatom ein tertiäres Kohlenstoffatom, da es von drei benachbarten Kohlenstoffatomen umgeben ist.

Nomenklatur der Alkane

Wenn eine Gruppe aus miteinander verbundenen Kohlenstoff- und Wasserstoffatomen an ein Molekül gebunden ist, sprechen wir von Alkylgruppen oder Alkylresten. Alkylreste können beispielsweise als Nebenketten an ein nn-Alkan gebunden sein, das somit die Hauptkette darstellt. In der folgenden Tabelle sind die ersten fünf Alkylreste aufgeführt. Wie du siehst, folgt die Benennung derselben Systematik wie die homologe Reihe der Alkane, nur mit der Wortendung -yl statt -an.

Gruppe Methyl- Ethyl- Propyl- Butyl- Pentyl-
als Formelteil CHX3\ce{–CH3} CHX2CHX3\ce{–CH2CH3} CHX2CHX2CHX3\ce{–CH2CH2CH3} CHX2CHX2CHX2CHX3\ce{–CH2CH2CH2CH3} CHX2CHX2CHX2CHX2CHX3\ce{–CH2CH2CH2CH2CH3}

Alkylreste ab der Propylgruppe können auf verschiedene Weisen angebunden sein: über endständige (primäre) oder mittlere (sekundäre) Kohlenstoffatome. Diese werden durch die Verknüpfung zu sekundären bzw. tertiären Kohlenstoffatomen. Alkylreste ab der Butylgruppe können wiederum selbst verzweigt sein. So können aus tertiären Kohlenstoffatomen durch die Verknüpfung auch quartäre Kohlenstoffatome werden. Bei verzweigten Alkanen mit verschiedenen, ebenfalls verzweigten Alkylgruppen fällt die richtige Benennung nicht so leicht.
Mithilfe der IUPAC-Nomenklatur lassen sich Alkane systematisch benennen. Es gelten folgende Regeln:

  • Bei einem verzweigten Alkan-Molekül sucht man sich zunächst die längste Kette aus Kohlenstoffatomen. Das ist die Hauptkette.
    Beispiel: Hat die längste Kette drei Kohlenstoffatome, dann bildet eine Propankette das Molekülgerüst, also die Hauptkette.
  • Die Kohlenstoffatome der längsten Kette werden nummeriert.
    Beispiel: Beim Propan gibt es nur die Möglichkeit CX1\ce{C1}, CX2\ce{C2} und CX3\ce{C3}. Ob von links oder von rechts gezählt, spielt keine Rolle.
  • Jetzt sucht man nach Alkylresten, die an die längste Kette gebunden sind.
    Beispiel: An der Propankette ist am Kohlenstoffatom CX2\ce{C2} eine Methylgruppe gebunden.

Der IUPAC-Name im Beispiel lautet: 2-Methylpropan. Das bedeutet, dass am mittleren Kohlenstoffatom CX2\ce{C2} der Propankette eine Methylgruppe gebunden ist. Wir kennen dieses Alkan schon als Isobutan, da es insgesamt vier Kohlenstoffatome enthält. Isobutan ist aber kein IUPAC-Name.

Mit der Nomenklatur der Alkane und wie sie in komplizierteren Fällen mit längeren Hauptketten und mehreren Nebenketten angewendet wird, kannst du dich mithilfe der Verlinkungen noch tiefer auseinandersetzen.

Eigenschaften der Alkane

In den Alkanen werden nur unpolare Atombindungen vom Typ CC\ce{C–C} und CH\ce{C–H} ausgebildet. Daraus ergibt sich eine Reihe von Eigenschaften der Alkane, auf die wir im Folgenden näher eingehen.

Wasserlöslichkeit

Alkane sind unpolare Stoffe. Sie sind nicht oder nur sehr schwach polarisierbar und es gibt keine Dipol-Dipol-Wechselwirkungen zwischen den Molekülen in einem Alkan. Als unpolare Stoffe sind sie praktisch unlöslich in Wasser bzw. mischen sich nicht mit diesem, da Wasser ein stark polares Lösungsmittel ist. Alkane sind allerdings löslich in Alkohol und gut löslich und mischbar in unpolaren Lösungsmitteln wie Chloroform, Ether oder Benzin, und natürlich auch untereinander. Es gilt der Merksatz: Gleiches löst sich in Gleichem. Alkane sind hydrophob und lipophil.

Aggregatzustand

Da die Moleküle in einem Alkan kaum oder nur sehr schwach polarisierbar sind, können sich nur schwache Van‑der‑Waals‑Kräfte zwischen den Molekülen ausbilden. Es gibt also nur geringe Anziehungskräfte zwischen den einzelnen Teilchen. Das führt dazu, dass Alkane relativ niedrige Schmelz- und Siedetemperaturen haben. Je größer ein Molekül, desto höher liegen allerdings die Schmelz- und Siedetemperaturen des Stoffes im Vergleich, da mit der Molekülgröße auch die Van‑der‑Waals‑Kräfte zunehmen. Die ersten Alkane von Methan bis Butan sind bei Raumtemperatur (und unter Normaldruck) gasförmig. Alkane, die fünf bis zwanzig Kohlenstoffatome besitzen, sind flüssig, und solche mit mehr als zwanzig Kohlenstoffatomen pro Molekül sind fest. Außerdem haben verzweigte Alkane niedrigere Schmelz- und Siedetemperaturen als vergleichbare unverzweigte (also kettenförmige) Alkane, da die Van‑der‑Waals‑Kräfte zwischen den Molekülen durch viele Verzweigungen weniger stark ausgebildet werden können.

In der folgenden Tabelle sind die Schmelz- und Siedetemperaturen einiger Alkane beispielhaft aufgelistet:

Name Summenformel Schmelztemperatur Siedetemperatur
Methan CHX4\ce{CH4} 182C{-}182\,^\circ\text{C} 162C{-}162\,^\circ\text{C}
Ethan CX2HX6\ce{C2H6} 183C{-}183\,^\circ\text{C} 88,6C{-}88{,}6\,^\circ\text{C}
Propan CX3HX8\ce{C3H8} 188C{-}188\,^\circ\text{C} 42,1C{-}42{,}1\,^\circ\text{C}
nn-Butan CX4HX10\ce{C4H10} 138C{-}138\,^\circ\text{C} 0,50C{-}0{,}50\,^\circ\text{C}
Isobutan CX4HX10\ce{C4H10} 160C{-}160\,^\circ\text{C} 11,7C{-}11{,}7\,^\circ\text{C}
nn-Pentan CX5HX12\ce{C5H12} 130C{-}130\,^\circ\text{C} 36,1C36{,}1\,^\circ\text{C}
Isopentan CX5HX12\ce{C5H12} 160C{-}160\,^\circ\text{C} 27,8C27{,}8\,^\circ\text{C}
nn-Decan CX10HX22\ce{C10H22} 30,0C{-}30{,}0\,^\circ\text{C} 174C174\,^\circ\text{C}
nn-Eicosan CX10HX22\ce{C10H22} 36,7C36{,}7\,^\circ\text{C} 343C343\,^\circ\text{C}

Kennst du das?
Vielleicht hast du schon einmal eine Kerze angezündet und der ruhig brennenden Flamm zugesehen. Die Kerze brennt, weil das Wachs, das langkettige Alkane enthält, schmilzt und verdampft. Diese Dämpfe entzünden sich und sorgen für das gemütliche Licht.
Wenn du mehr über die Eigenschaften der Alkane lernst, verstehst du besser, warum Kerzen so gut brennen und was sie zu einer beliebten Lichtquelle macht. Alkane bringen Licht in dein Zimmer!

Reaktionen der Alkane

Die Chemie der Alkane wird ganz wesentlich von der chemischen Reaktivität dieser Stoffgruppe bestimmt. Im Folgenden wollen wir uns zwei grundlegende Arten von Reaktionen mit Alkanen ansehen.

Reaktion mit Sauerstoff

Die wichtigste Reaktion der Alkane erfolgt mit Sauerstoff, denn Alkane sind gut brennbar. Bei der vollständigen Verbrennung von Alkanen entstehen Kohlenstoffdioxid (COX2)\left( \ce{CO2} \right) und Wasser (HX2O)\left( \ce{H2O} \right), bei der unvollständigen Verbrennung entstehen auch Kohlenstoffmonoxid (CO)\left( \ce{CO} \right) und Kohlenstoff (C)\left( \ce{C} \right), der sich in Form von Ruß zeigt. Alkane sind wichtige Bestandteile vieler fossiler Brennstoffe wie Kohle, Erdöl und Erdgas. Beispielhaft sehen wir uns hier die Verbrennung von Methan (CHX4)\left( \ce{CH4} \right) an, einem der Hauptbestandteile von Erdgas:

CHX4+2OX2COX2+2HX2O\ce{CH4 + 2 O2 -> CO2 + 2 H2O}

Die Verbrennung von fossilen Kohlenwasserstoffen stellt immer noch eine der wichtigsten Arten der Energieerzeugung in unserer Gesellschaft dar. Dabei wird Energie in Form von Wärme freigesetzt, die in andere Energieformen, zum Beispiel in elektrische Energie, umgewandelt werden kann. Allerdings wird dabei eben auch Kohlenstoffdioxid freigesetzt, das als Treibhausgas eine problematische Rolle bei der Veränderung des Klimas auf der Erde spielt.

Wusstest du schon?
Methan (CHX4)\left( \ce{CH4} \right), das einfachste Alkan, ist ein mächtiges Treibhausgas! Seine Klimawirkung ist um ein Vielfaches stärker als die von Kohlenstoffdioxid (COX2)\left( \ce{CO2} \right). Allerdings kommt es nicht in so großen Mengen in der Erdatmosphäre vor.
Methan entsteht auf natürlichem Wege in Sümpfen und beim Verdauungsprozess von Rindern. Also Kühe geben nicht nur Milch, sie sind auch kleine Methanfabriken!

Radikalische Substitution

Von großer Bedeutung in der Synthesechemie, beispielsweise zur Herstellung von Kunststoffen, Textilien oder Arzneimitteln, sind Substitutionsreaktionen mit Alkanen. Man versteht darunter Reaktionen, bei denen Wasserstoffatome in Alkanen von anderen Atomen oder funktionellen Gruppen ersetzt, also substituiert, werden. Beispielhaft sehen wir uns hier eine radikalische Substitution von Methan (CHX4)\left( \ce{CH4} \right) an, das durch eine Reaktion mit Chlor (ClX2)\left( \ce{Cl2} \right) halogeniert wird.

CHX4+ClX2CHX3H+Cl  ClCHX3Cl+HCl\ce{CH4 + Cl2 -> CH3H + Cl. .Cl -> CH3Cl + HCl}

Zuerst spaltet sich elementares Chlor (ClX2)\left( \ce{Cl2}\right) zu zwei Chlor-Radikalen (Cl)\left( \ce{Cl.}\right) auf, die dann das Methanmolekül (CHX4 bzw. CHX3H)\left( \ce{CH4}~\text{bzw.}~\ce{CH3H}\right) angreifen. So bilden sich Chlormethan (CHX3Cl)\left( \ce{CH3Cl}\right) und Chlorwasserstoff (HCl)\left( \ce{HCl}\right). Allgemein lässt sich eine solche Halogenierung eines Alkans vereinfacht so formulieren:

RH+XXRX+HX\ce{R–H + X–X -> R–X + H–X}

R\ce{R} stellt einen beliebigen Alkylrest dar, XX2\ce{X2} ist ein beliebiges Halogen. Damit die Startreaktion stattfindet, bei der sich das Halogen in zwei Radikale aufspaltet (XX2X+X)\left( \ce{X2 -> X. + .X} \right), muss Energie zugeführt werden. Oft wird dies beispielsweise durch UV-Licht erreicht. Neben der Halogenierung gibt es noch viele weitere Reaktionen, die nach dem Mechanismus der radikalischen Substitution ablaufen.

Verwendung und Vorkommen von Alkanen im Alltag

Alkane spielen eine wichtige Rolle in unserem Alltag, da sie sehr vielseitig verwendet werden können. Die wichtigsten Anwendungen lassen sich in zwei Kategorien einteilen:

  • Alkane sind Bestandteile von Brennstoffen wie Erdöl und Erdgas oder auch von deren weiterverarbeiteten Formen (z. B. Benzin oder Heizgas).
  • Alkane dienen als Grundstoffe zur Herstellung von Kunststoffen (Polymere), aus denen Verpackungen, Gehäuse und viele Alltagsgegenstände gefertigt werden, aber auch Textilien, Arzneimittel, Lösungsmittel und vieles mehr.

In der folgenden Tabelle haben wir die wichtigsten Anwendungen einiger Alkane zusammengefasst:

Name Summenformel Anwendung
Methan CHX4\ce{CH4} Heizgas, Biogas, Brenngas zum Kochen
Ethan CX2HX6\ce{C2H6} Ausgangsstoff für Synthese von Ethan, Essigsäure uvm.
Propan CX3HX8\ce{C3H8} Flüssiggas, Autogas, Kältemittel
Butan CX4HX10\ce{C4H10} Flüssiggas, Treibgas, Ausgangsstoff für Synthese verschiedener Stoffe
Pentan CX5HX12\ce{C5H12} Kältemittel, Lösungsmittel
Hexan CX6HX14\ce{C6H14} Lösungsmittel, Ausgangsstoff für Synthese verschiedener Kunststoffe

Die ersten vier Alkane der homologen Reihe kommen auf der Erde hauptsächlich als Bestandteile von Erdgas vor, können aber auch in Biogasanlagen aus organischen Abfällen gewonnen werden. Ein nicht zu unterschätzender Produzent von Methan sind Rinder, die das Gas im Zuge ihrer Verdauung freisetzen.
Pentan, Hexan und weitere, unter Normalbedingungen flüssige Alkane, kommen in Erdöl vor. Dies trifft auch auf Heptan und Octan zu, die wichtige Bestandteile von Benzin und anderen Motorentreibstoffen darstellen.
Alkane, die unter Normalbedingungen zähflüssig bis fest sind, werden als Paraffine bezeichnet. Sie können ebenfalls aus Erdöl gewonnen werden, sind aber etwas weniger reaktiv und auch weniger gesundheitsschädlich als die bisher genannten Alkane. Sie kommen beispielsweise in Wachsen und Ölen, Pflegemitteln und Salben zum Einsatz.

Schlaue Idee
Schau dir die Inhaltsstoffe deiner Kosmetikprodukte an. Viele enthalten Vaseline, ein Gemisch aus langkettigen Alkanen, das deine Haut geschmeidig hält und vor Austrocknung schützt.

Ausblick – das lernst du nach Eigenschaften der Alkane

Als nächstes solltest du dich mit der Nomenklatur der Alkane beschäftigen. Sieh dir auch die Verbrennung von Alkanen und die Halogenkohlenwasserstoffe an und erweitere dein chemisches Wissen. Lass dich begeistern von den Geheimnissen der organischen Chemie!

Zusammenfassung der Alkane

  • Alkane sind einfache Kohlenwasserstoffe. Sie setzen sich aus den Elementen Kohlenstoff (C)\left( \ce{C} \right) und Wasserstoff (H)\left( \ce{H} \right) zusammen.
  • Die Stoffgruppe der Alkane bildet eine homologe Reihe. Die verschiedenen Alkane dieser Reihe werden nach der Anzahl der Kohlenstoffatome ihrer Moleküle unterschieden.
  • Alkane sind gesättigte Kohlenwasserstoffe. In den Molekülen der verschiedenen Alkane treten ausschließlich Einfachbindungen auf.
  • Methan ist das einfachste Alkan. Die Namen und Summenformeln der Alkane von Methan (CHX4)\left( \ce{CH4} \right) bis Decan (CX10HX22)\left( \ce{C10H22} \right) solltest du auswendig kennen. Die Summenformeln folgen einer festen Systematik.
  • Alkane sind lipophil und relativ reaktionsträge. Unter geeigneten Bedingungen dienen sie vor allem als Brennstoffe und zur Herstellung vieler weiterer synthetischer Stoffe wie Kunststoffe, Textilien, Arzneimittel und Lösungsmittel.

Häufig gestellte Fragen zum Thema Alkane

5 Kommentare
  1. Hallo @Herr S.,
    ja so ist es. Die Van-der-Waals-Kräfte setzen sich aus der Keesom-Wechselwirkung (zwischen zwei Dipolen), der Debye-Wechselwirkung (zwischen einem Dipol und einem induzierten Dipol) und der London'schen Dispersionswechselwirkung (London-Kraft zwischen zwei induzierten Dipolen) zusammen.

    Von Lukas Schwarz, vor etwa einem Monat
  2. London Kräfte sind nur eine spezielle Form der Van der Waals Kräfte oder

    Von Herr S., vor 2 Monaten
  3. Top

    Von Bella, vor 4 Monaten
  4. Super Zusammenfassung
    Vielen Dank !

    Von Felice , vor 11 Monaten
  5. Nix da mit Popcorn, die Brezeln sind am leckersten finde ich

    Von Robin, vor etwa einem Jahr

Eigenschaften der Alkane Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Eigenschaften der Alkane kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'134

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'601

Lernvideos

35'660

Übungen

32'407

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden