Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Planeten und ihre Bewegung

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Planeten Bewegung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.7 / 31 Bewertungen
Die Autor*innen
Avatar
André Otto
Planeten und ihre Bewegung
lernst du in der Sekundarstufe 5. Klasse - 6. Klasse - 7. Klasse

Grundlagen zum Thema Planeten und ihre Bewegung

In diesem Video wird das Planetensystem erklärt. Zuerst werden kurz die beiden wichtigsten Modelle in ihrer geschichtlichen Entwicklung vorgestellt und ein eingängiger Merksatz für die richtige Reihenfolge der Planeten wird gegeben. Danach werden die Keplerschen Gesetze wiederholt und einige interessante Bahndaten und ihre Verhältnisse aufgeführt. Die Besonderheit der Venus wird erläutert und die erscheinenden Phasen zweier Planeten werden vorgestellt. Als Zugabe wird zuletzt noch erörtert, was die sog. Periheldrehung ist und warum sie erst mit der Allgemeinen Relativitätstheorie Einsteins genau berechnet werden konnte.

Transkript Planeten und ihre Bewegung

Hallo und ganz herzlich willkommen! Das Video heißt "Planeten und ihre Bewegung". Du kennst bereits die Gravitation und die Keplerschen Gesetze. Nachher kannst du erläutern: Planeten und ihre Reihenfolge, Bahndaten der Planeten, den Begriff "Morgenstern", Phasen von Planeten und ein Problem zur Periheldrehung. Und schon geht’s los! Das Planetensystem: Wir leben in einem Planetensystem. Dazu gehören die Erde und die Sonne. In diesem Video werden wir uns mit dem Aufbau, der Planetenbewegung und den Besonderheiten unseres Planetensystems befassen. Die Kernfrage dabei ist: Was ist im Zentrum unseres Planetensystems? Unser Planetensystem: Erde oder Sonne, was ist das Zentrum unseres Planetensystems? Eine mögliche Vorstellung ist das "geozentrische Weltbild", hier ist die Erde im Zentrum des Planetensystems. Man kennt es bereits von der Antike; Platon, Jahrhunderte vor der Zeitrechnung, vertrat es, und auch Ptolemäus, einhundert Jahre nach der Zeitrechnung. Hier eine Darstellung des Ptolemäischen Weltbildes. Das geozentrische Weltbild erstreckte sich bis weit in das 17. Jahrhundert. Allerdings gab es schon Auflösungserscheinungen. Das Weltbild des Astronomen Tycho Brahe sah so aus: Zwar befand sich die Erde im Zentrum, aber die Planeten kreisten um die Sonne. Im Gegensatz dazu das "heliozentrische Weltbild", hier ist die Sonne im Zentrum des Planetensystems. Ihr wisst es sicher schon, das ist die richtige Vorstellung über unser Planetensystem. Das heliozentrische Weltbild wurde bereits von Aristarch von Samos im vierten Jahrhundert vor unserer Zeit vermutet. Zum heliozentrischen Weltbild war es ein weiter Weg; wichtige Beiträge dazu lieferten: Nikolaus Kopernikus, hier die wichtigste Seite seines Manuskripts; das war Anfang des 16. Jahrhunderts. Johannes Kepler fand die nach ihm benannten Gesetze, das war Anfang des 17. Jahrhunderts. Ihre Bedeutung ist so groß, dass wir sie kurz besprechen wollen. Keplersche Gesetze: Um sie zu veranschaulichen benötige ich eine Ellipse mit ihren Brennpunkten. 1. Gesetz: Die Planeten bewegen sich auf elliptischen Bahnen, in einem Brennpunkt der Ellipse steht die Sonne. 2. Gesetz: Der Leitstrahl der Sonne überstreicht in gleichen Zeiten gleiche Flächen. In der Zeichnung sieht das so aus: Der Planet bewegt sich auf den Bahnabschnitten der Ellipse, die jeweils eine Seite der Flächen A1 und A2 eingrenzen. Betrachte ich A1 und A2 als Flächeninhalte, so gilt A1=A2. Die Zeit, die der Planet benötigt, um die Bahnabschnitte zurückzulegen, muss jeweils gleich sein. 3. Gesetz: T12/T22, das sind die Umlaufzeiten zweier Planeten, ist gleich a13/a23, klein a sind die großen Halbachsen der Ellipse; das heißt Folgendes: Zunächst zeichne ich die beiden Symmetrieachsen ein; die lilafarbene Strecke ist die große Halbachse. Bemerkungen: Die Keplerschen Gesetze hatten gewissermaßen zwei Väter, Tycho Brahe und Johannes Kepler. Brahe war ein herausragender Experimentator, Kepler war ein herausragender Mathematiker. Brahe wachte über seinen Datenschatz, Kepler konnte das experimentelle Material Brahes erst nach dessen Tod in vollem Umfang nutzen. Der Name von Isaac Newton ist eng mit der Gravitation verknüpft, die Keplerschen Gesetze sind aus der Newtonschen Gravitationstheorie herleitbar. So, im Zentrum des Sonnensystems ist die Sonne. Kommen wir nun zur Reihenfolge der Planeten. Die Sonne wird von acht Planeten umkreist; um die Reihenfolge zu merken, hilft uns ein Spruch über den Nachthimmel: “Mein Vater erklärt mir jeden Sonntag unseren Nachthimmel”. Die Anfangsbuchstaben sind jeweils die Anfangsbuchstaben der Planeten: Mein-Merkur, Vater-Venus, erklärt-Erde, mir-Mars, jeden-Jupiter, Sonntag-Saturn, unseren-Uranus, Nachthimmel-Neptun. Und hier noch einmal die Reihenfolge in zunehmender Entfernung von der Sonne: Merkur, Venus, Erde, Mars, Jupiter, Saturn, Uranus, Neptun. Übrigens, der Pluto wird nicht mehr als Planet angesehen. Kommen wir nun zu den Bahndaten. Ich notiere noch einmal alle acht Planeten in zunehmender Entfernung von der Sonne. Betrachten wir nun die große Bahnhalbachse, das heißt die große Halbachse der Ellipse. Längenangabe in AE, das bedeutet Astronomische Einheit: Erde 1, Merkur 0,39, denn so ist AE gerade definiert, Venus 0,72, Mars 1,52, die Werte werden zunehmend größer, das Maximum ist beim Neptun mit 30,07 erreicht. Noch mal zum Merken: 1AE heißt eine astronomische Einheit, und das heißt 149,6 Millionen Kilometer. Die große Bahnhalbachse ist grob gesprochen der Abstand eines Planeten zur Sonne. Und nun die mittlere Orbitalgeschwindigkeit in Kilometer pro Sekunde. Merkur hat einen Wert von 48, die Werte fallen mit zunehmendem Abstand von der Sonne, Neptun zeigt den kleinsten Wert mit immerhin noch 5km/s. Tendenz: die Orbitalgeschwindigkeit ist von Merkur zu Neptun abnehmend. Die Umlaufperiode in Jahren: Bei Merkur ist das gerade mal ein Viertel Erdenjahr, bei der Venus etwas größer, die Erde mit 1 ist klar und dann nimmt die Umlaufperiode rapide zu, bei Uranus 84 und bei Neptun sogar 165 Jahre. Auwei, auwei, auf dem Planeten Neptun wird man noch nicht mal ein Neptunjahr alt. Und schließlich die Rotationsperiode in Erdentagen: Bei Merkur und Venus ist die Rotation ganz langsam, die Erde mit 1 ist klar, die übrigen Planeten zeigen Rotationsperioden, die um 1 liegen oder zumindest nur etwas darunter. Aber eins weiß ich mit Sicherheit: auf der Venus möchte ich nicht ganztags arbeiten. Und nun ein interessanter Begriff: der "Morgenstern". Die Venus sieht man nur in der Dämmerung. Der Planet Venus wird als “Morgenstern” oder “Abendstern” bezeichnet, da er nur am Morgenhimmel oder Abendhimmel deutlich sichtbar ist. Und noch etwas Interessantes: Phasen. Die Planeten Merkur und Venus haben wie der Mond Phasen. Und zu guter Letzt ein Schmankerl der Wissenschaft: “Periheldrehung”. Schaut euch bitte einmal das Bild links an. Das ist die sogenannte "Periheldrehung" des Planeten Merkur, rechts. Was ist das? Es ist die Verschiebung des "Perihels", das heißt des sonnennächsten Punkts auf der Bahn eines die Sonne umlaufenden Körpers. Angegeben wird die Periheldrehung in Bogensekunden pro 100 Jahre. Bitte denkt dran, bei einem Winkel sind 3600 Bogensekunden 1 Grad. Die Periheldrehung des Merkurs wurde berühmt; obwohl sie klein ist, ist es im Vergleich zu anderen Himmelskörpern der höchste Wert im Sonnensystem. Daher ist es erstaunlich, dass sie schon lange bekannt ist. Es gab aber ein Problem, nämlich die Abweichung vom berechneten zum experimentellen Wert. Kommen wir zu den Fakten: Wir geben die Periheldrehung in Bogensekunden pro 100 Jahre an. Für berechnet fand man ungefähr 532, für beobachtet etwa 575, das ergibt eine Differenz von immerhin etwa 43. Die Newtonsche Mechanik konnte diese Differenz nicht klären. Aber dann kam er, na wer wohl? 1915 gelang es Einstein mit der "Allgemeinen Relativitätstheorie", abgekürzt ART, die Differenz zu berechnen. Die Differenz nach der ART berechnet beträgt 43,03, ein vorzügliches Ergebnis. Es ist schon wieder Zeit, sich zu verabschieden. Das war ein weiterer Film von André Otto. Ich wünsche euch alles Gute und viel Erfolg. Tschüss!

8 Kommentare
  1. XD

    Von Itslearning Nutzer 2535 79199, vor mehr als 5 Jahren
  2. lol

    Von Zanakraljic, vor mehr als 6 Jahren
  3. Bitteschön, lieber Omid.
    Alles Gute und viel Erfolg

    Von André Otto, vor etwa 7 Jahren
  4. danke herr andre otto

    Von Omid T., vor etwa 7 Jahren
  5. Darüber freue ich mich.
    Alles Gute

    Von André Otto, vor mehr als 8 Jahren
Mehr Kommentare

Planeten und ihre Bewegung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Planeten und ihre Bewegung kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'213

sofaheld-Level

6'600

vorgefertigte
Vokabeln

7'654

Lernvideos

37'110

Übungen

32'360

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden