Reaktionsgeschwindigkeit und Reaktionsordnung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Reaktionsgeschwindigkeit und Reaktionsordnung
Dieses Video du als einen ersten Einstieg in das Thema der Reaktionskinetik nutzen. So wird dir die Reaktionsgeschwindigkeit erklärt und Faktoren beleuchtet, welche diese Beeinflussen. Es werden aber auch die Reaktionsordnungen vorgestellt und wesentliche Zusammenhänge zwischen einer Reaktion und seiner Kinetik hergestellt. Das Video beginnt mit einer Analogie der Geschwindigkeit zwischen Mechanik und Reaktionskinetik in welcher die grundlegenden Größen der Reaktionsgeschwindigkeit getroffen werden. Im weiteren Verlauf wird daraus die allgemeine Gleichung für Reaktionsgeschwindigkeiten von Edukten ermittelt. Im Anschluss daran werden Reaktionsfaktoren, wie die Konzentration der Edukte, die Temperatur und der Reaktionstyp besprochen. Im zweiten Teil des Videos werden dann die Reaktionsordnungen vorgestellt und deren Bedeutung erläutert. In diesem Zusammenhang werde die Begriffe Gesamt- und Teilordnung ausführlich erklärt. Zum Ende des Videos erhältst du noch einige wichtige Faustregeln. Wenn du mehr dazu erfahren willst, dann schau dir das Video an.
Transkript Reaktionsgeschwindigkeit und Reaktionsordnung
Guten Tag und herzlich willkommen, In diesem Video geht es um die Reaktionsgeschwindigkeit und die Reaktionsordnung. Es ist eine Einführung. Das Video gehört zu der Reihe Reaktionskinetik, kurz: Kinetik. Als unbedingtes Vorkenntnisse solltest du mitbringen: gutes Wissen über Reaktionsgleichungen, du weißt über Konzentration Bescheid und aus der Mathematik, du weißt was ein Differentialquotient ist. Mein Ziel ist es, dir ein Verständnis über die Reaktionsgeschwindigkeit v und die Reaktionsordnung n als Grundbegriffe der Reaktionskinetik zu vermitteln. Das Video ist fünfgeteilt: 1. Wir definieren "Reaktionsgeschwindigkeit" 2. Wovon hängt v, die Reaktionsgeschwindigkeit, ab? 3. Wir beschrieben v mathematisch 4. Die Reaktionsordnung n 5. Die Zusammenfassung Zu Beginn ein kurzes Wort über die Reaktionskinetik, kurz Kinetik genannt: Sie gehört zur physikalischen Chemie. Es ist die Lehre von den Reaktionsgeschwindigkeiten chemischer Reaktionen. Und schon sind wir beim Abschnitt 1: Wir definieren "Reaktionsgeschwindigkeit". Für die Reaktionsgeschwindigkeit kann man das Symbol v verwenden. Ich werde hier auf einen Index wie etwa r verzichten. Eisen III-Ionen reagieren mit Thiocyanationen zu einem farbigen Eisensalz. Die Reaktion läuft praktisch augenblicklich ab. Das heißt, die Reaktionsgeschwindigkeit ist sehr sehr hoch. Anders bei der Rostbildung. Sie verläuft langsam, das heißt, die Reaktionsgeschwindigkeit ist hier klein. Soweit so gut. Aber wie lässt sich v sinnvoll definieren? Erinnern wir uns an die Mechanik. Wenn ein Körper von einem Punkt zu einem anderen bewegt wird, so legt er einen bestimmten Weg, Delta s zurück. Die benötigte Zeit dafür, bezeichnen wir als Delta t. Unter Delta versteht man jeweils Differenzen. Und erinnert euch: Die mittlere Geschwindigkeit wurde als Delta s÷ Delta t definiert. Können wir daraus für die Reaktionskinetik eine Analogie ableiten? Die Reaktionsgeschwindigkeit v bezieht sich mit Sicherheit auch auf Delta t, das heißt, wir müssen durch dieses dividieren. Aber was steht im Zähler des Bruches? Bei chemischen Reaktionen haben wir es mit Stoffen zu tun und dabei ist wichtig, in welcher Konzentration diese auftreten. Die Konzentration ist definiert als: Teilchenzahl ÷ Volumen. Für die Reaktionsgeschwindigkeit ergibt sich somit. Delta c÷ Delta t. Wir merken uns: v=Konzentrationsänderung ÷Zeitänderung. Betrachten wir nun eine chemische Reaktion. Wir wollen die Abhängigkeit der Konzentration c eines Stoffes, in Abhängigkeit von der zeit t in einem Diagramm darstellen. Dabei ist es häufig so, dass die Startkonzentration c0 immer geringen wird und sich mit laufender Zeit t gegen 0 ändert. Wir können schreiben, dass v, die Reaktionsgeschwindigkeit ungefähr Delta c÷ Delta t ist. Warum das so ist, möchte ich gleich erklären. Wichtig ist in diesem Fall noch das Minuszeichen zwischen dem Quotient. Das hat den Grund, weil man in der Kinetik häufig möchte, dass die Reaktionsgeschwindigkeit größer als 0 ist. Exakt gesprochen ist v die Steigung der Tangente in einem Punkt an den Graphen der Funktion. Wenn ich aber ein Steigungsdreieck verwende, mit Delta c und Delta t als Achsenabschnitte, so erhalte ich für v nur einen Näherungswert. Ich hätte aber gern den exakten Wert, das heißt: die Steigung der Tangente an diese Kurve an einem Punkt. Und jetzt müssen wir uns an die Differentialrechnung aus der 11. Klasse erinnern. Für v erhalte ich einen exakten Ausdruck, wenn ich von dem Ausdruck auf der rechten Seite, in der oberen Darstellungsweise, den Grenzwert bilde. Und zwar erhalte ich den Wert genau dann, wenn Delta t gegen 0 geht. Das heißt, die Zeit sehr, sehr klein wird. Bis auf das negative Vorzeichen ist das nichts weiter als der Differentialquotient der Funktion c von t, die ich im Diagramm dargestellt habe. Oder anders gesprochen, dass ist die erste Ableitung der Konzentration nach der Zeit. Die physikalischen Chemiker und Physiker schreiben gerne: v=-dc/dt. Das ist nichts weiter als der Differentialquotient mit dem Vorzeichen -. Das d vor c bzw. t bedeutet, dass es unendlich kleine Größen sind, Differentiale. Und noch einmal zurück zu diesem ominösen - als Vorzeichen, weil es eventuell Verwirrung stiften könnte. Man braucht es nicht unbedingt, aber die meisten Wissenschaftler benutzen es, und zwar folgendermaßen: Wenn wir wieder c über t auftragen und A soll nach rechts reagieren, so erhalten wir: v=-dv/dt. Wohlgemerkt aus dem einzigen Grund, weil v ein positives Vorzeichen haben soll und dc nach dt, wie ja leicht zu sehen ist, Steigung der Tangente an dieser Kurve, negativ ist. Betrachten wir nun den anderen Fall. Wenn sich ein Edukt B bildet, dann sieht die kinetische Kurve ungefähr so aus. Und hier schreibt man ganz einfach: v=dc/dt. Hier gibt es kein - aus dem einfachen Grund, weil die Steigung nämlich dc nach dt im gesamten Bereich, den wir uns hier anschauen können, positiv ist. 2. Wovon hängt die Reaktionsgeschwindigkeit v ab? Nehmen wir einmal an, wir haben ein Reaktionsgemisch, das stark verdünnt ist. Das heißt, die Konzentration ist sehr gering. Es dauert hier schon ziemlich lange und man braucht erheblich viel Geduld, bis man sieht, dass 2 Teilchen in geeigneter Form zusammenstoßen und es zur chemischen Reaktion kommt. Uff geschafft! Endlich haben sie sich bequemt, miteinander zu reagieren. Ist die Konzentration höher, so ist die Wahrscheinlichkeit, dass 2 Teilchen in geeigneter Weise miteinander reagieren und das Reaktionsprodukt bilden schon größer. Auch hier haben sich gottlob Partner gefunden. Aber schon erheblich schneller. Und hurtig, hurtig kommt es zur Paarung, wenn die Konzentration recht hoch ist. Das erste Produktmolekül bildet sich sehr schnell. Wir stellen fest: Je höher die Konzentration c, umso höher ist auch v, die Reaktionsgeschwindigkeit. Und umgekehrt sinkt die Konzentration c, so sinkt auch die Reaktionsgeschwindigkeit v. Ich habe mich bei der Konzentration hier auf die Edukte bezogen. Repräsentativ dafür ist das Edukt A, welches zu Produkten reagiert. Als 2. hängt die Reaktionsgeschwindigkeit v natürlich von der Art der Reaktion ab. Jede Reaktion hat ihr eigenes Verhalten. Denkt an den gravierenden Unterschied der Reaktionsgeschwindigkeit von Fällung und Rostbildung, den wir am Anfang betrachtet haben. Wichtig für v, die Reaktionsgeschwindigkeit einer chemischen Reaktion, ist auch die Temperatur. Je höher die Temperatur, umso höher ist auch die Reaktionsgeschwindigkeit. Der Zusammenhang wird quantitativ in der Arrheniunsgleichung beschrieben. Es gibt noch weitere Faktoren, doch diese 3 sind die wichtigsten. 3. Wir beschreiben v mathematisch: Zunächst muss man einmal feststellen, dass es keine universelle Beschreibung einer chemischen Reaktion gibt, denn jede chemische Reaktion hat ihre eigene kinetische Gleichung. Und die könnte so aussehen: v=k×c. Denn v so kann man sich denken ist proportional zu c und k ist der Proportionalitätsfaktor. Man bezeichnet k als Reaktionsgeschwindigkeitskonstante oder häufiger kürzer als Geschwindigkeitskonstante. Es ist auch möglich, dass v Funktion der Konzentrationen zweier Komponenten von A und B ist. Dann lautet die Gleichung: v=k×cA×cB. Es kann auch sein, dass die Kinetik der Reaktionen durch v=k×c2 beschrieben wird. Oder auch durch: v=k×ca2×cB. Und jetzt kommt eine Bemerkung, die unwahrscheinlich wichtig ist und vielleicht die meistens von euch enttäuschen wird: Die kinetische Gleichung einer Reaktion wird aus dem Experiment gewonnen, nicht aus der Reaktionsgleichung. 4. Reaktionsordnung n: Ich möchte euch den Begriff der Reaktionsordnung anhand verschiedener kinetischer Gleichungen erläutern. Zum Beispiel: v=k×c2. Die Reaktionsordnung n ist dann =2. Oder: v=k×c3. Die Reaktionsordnung n ist dann =3. Auch so was ist möglich: v=k×c1,5. n ist dann =1,5. Und selbst so etwas gibt es. Ein ganzes Video habe ich ihm gewidmet: v=k. Dann kann man schreiben: ist =k×c0, also die Reaktionsordnung n ist gleich 0. Für die Reaktionsordnung n einer chemischen Reaktion sind somit sogar nicht ganzzahlige Werte und sogar 0 möglich. Bei den Reaktionsordnungen hat man außerdem noch zwischen Gesamtordnungen und Teilordnungen zu unterscheiden. Nehmen wir zum Beispiel: v=k×cA×cB. Über die Konzentrationen schreiben wir die jeweiligen Exponenten. Das heißt jeweils eine 1. Man spricht hier von Teilordnungen bezüglich A und B. Es ergibt sich 1+1=2=n. und n ist gleich die Gesamtordnung der chemischen Reaktion. Somit ist die Summe der Teilordnungen einer chemischen Reaktion gleich ihrer Gesamtordnung. Aber auch so etwas wäre möglich: v=k×ca0,5×cb1,5×cc0,8. Die Teilordnungen nach A, B oder C sind entsprechend 0,5, 1,5 und 0,8. Wir erhalten somit: nA+nB+Nc=0,5+1,5+0,8=2,8. Und nun ein paar kleine Sätze, die der physikalische Chemiker auswendig lernen sollte - zumindest sinngemäß:
Reaktionsordnungen beziehen sich stets auf eine Gesamtreaktion. Man muss sie formalkinetisch verstehen. Mit der Reaktionsgleichung haben sie nichts - aber auch gar nichts - zu tun. 5. Zusammenfassung: Bei Betrachtung des kinetischen Verlaufs einer chemischen Reaktion der Abhängigkeit der Konzentration C von der Zeit , so kommt man zu folgender Schlussfolgerung: Die Geschwindigkeit der Reaktion ist die erste Ableitung der Konzentration nach der Zeit. Gegebenenfalls mit Vorzeichen versehen. Die Geschwindigkeit chemischer Reaktionen ist temperaturabhängig. Daher wird die Temperatur bei Experimenten zur Bestimmung der Geschwindigkeit von Reaktionen konstant gehalten. Die Reaktionsgeschwindigkeit ist proportional zur Konzentration einer Edukt-Komponente. Beim Vorliegen einer kinetischen Gleichung v=k×c kann man auch schreiben: k×c1. 1 ist in diesem Fall die Ordnung der chemischen Reaktion. Ist v von zwei Komponenten A und B abhängig, so könnte folgende kinetische Gleichung vorliegen: v=k×cA0,5×cB1,5. nA und nB sind die sogenannten Teilordnungen der chemischen Reaktion. Ihre Summe ergibt die Gesamtordnung der Reaktion. In unserem Fall ergibt sich: 0,5+1,5=2. Sowohl n, als auch nA, nB usw. beschreiben stets eine Gesamtreaktion und nicht die einzelnen Teilschritte. So gesehen haben sowohl die Gesamtordnung als auch die Teilordnung einer chemischen Reaktion nicht, aber auch gar nichts, mit der Reaktionsgleichung dieser Reaktion zu tun. Es tut mir leid, wenn ich heute Illusionen zerstört haben sollte, aber die wissenschaftliche Wahrheit kennt kein Pardon. Ich wünsche euch alles Gute und viel Erfolg, tschüss.
Reaktionsgeschwindigkeit und Reaktionsordnung Übung
-
Bestimme die Reaktionsordnung aus der Geschwindigkeitsgleichung.
-
Nenne Faktoren, von denen die Reaktionsgeschwindigkeit abhängt.
-
Leite einen Ausdruck für die Reaktionsgeschwindigkeit ab.
-
Bestimme die Geschwindigkeitsgleichungen.
-
Definiere den Begriff der Reaktionsgeschwindigkeit.
-
Erschließe das Geschwindigkeitsgesetz für den radioaktiven Zerfall.
9'152
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'604
Lernvideos
35'617
Übungen
32'360
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Stärke und Cellulose Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindung
- Wasserhärte
- Peptidbindung
- Fermentation
Hallo,
allgemein hat die Reaktionsordnung n keine physikalische Bedeutung. Sie ist eine formalkinetische Zahl, die angibt, in welcher Potenz der Konzentration ein reiner Stoff (Element, Verbindung) die kinetische Gleichung beschreibt.
v = k * c**1,5 ist ein Beispiel und zeigt, dass n nicht ganzzahlig sein muss. Das ist der Fall, wenn die chemische Reaktion aus mehreren Elementarrekaktionen zusammengesetzt ist.
Betrachtet man eine Elementarreaktion (Reaktion die in keine Einzelschritte aufgespalten ist), so spricht man besser von Molekularität. Da gibt es 1, 2 oder selten 3. Dieser Begriff beschreibt, wie viel Teilchen (gleiche oder verschiedene) bei dieser Elementarreaktion miteinander reagieren. Bei einer Elementarreaktion ist die Molekularität gleich der Reaktionsordnung. Das gleiche gilt auch, wenn eine Elementarreaktion viel langsamer als die übrigen ist. Man sagt auch limitierendes Stadium (geschwindigkeitsbestimmender Schritt). Mathematisch exakt ist das nicht. Für kinetische Untersuchungen aber völlig ausreichend.
Schule: In der Schule werden die aufgeführten Probleme nicht thematisiert und die Reaktionsordnung stillschweigend (und unzulässig) als Molekularität verstanden. Das ist auch möglich, vorausgesetzt, man hat es mit Reaktionen zu tun, die keine Einzelschritte aufweisen. Oder aber, man betrachtet nur Elementarreaktionen.
Viel Erfolg und alles Gute
Hallo!
Sehr gut gemachtes Video, aber bin jetzt nicht schlauer geworden was die Reaktionsordnung angeht. Was für eine physikalische/chemische Bedeutung hat sie? Wann ist sie = 0, = 1 usw...
Bitte bei "Video vorschlagen" eintragen.
Ich hätte mich sehr über ein Anwendungsbeispiel gefreut.