Zeigerformalismus
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lerntext zum Thema Zeigerformalismus
Zeigerformalismus – Definition
Der Zeigerformalismus, oder auch das Zeigermodell genannt, ist eine Methode zur Beschreibung von periodischen Vorgängen. Die Darstellung des Zeigermodells entspringt aus der Untersuchung des Sinus und Cosinus am Einheitskreis. Im physikalischen Sinne wird der Zeigerformalismus häufig in der Schwingungslehre und in der Wellenoptik benutzt.
Ein Zeiger als Pfeil am Einheitskreis steht bildlich für die Position bei einer Sinusfunktion bzw. einer Cosinusfunktion. Bezogen auf die Wellenfunktion einer harmonischen Schwingung stecken im Zeiger Informationen zur Amplitude und Phase einer Welle.
Mit dem Zeigerformalismus werden auch im Vergleich oft Phasenverschiebungen zwischen zwei unterschiedlichen Größen deutlich gemacht. Auf diese Art und Weise lassen sich auch die Phasenverschiebungen von Spannung, Stromstärke und Widerstand im Wechselstromkreis untersuchen.
Zeigerformalismus zur Beschreibung von Interferenz und Beugung
Der Zeigerformalismus kann auch dabei helfen, Phänomene von Interferenz und Beugung näher zu untersuchen. Dabei beruht die Untersuchung auf den unterschiedlichen Positionen und Gangunterschieden, um die Interferenz- und Beugungsmuster zu erzeugen.
Zeigerformalismus am schmalen Spalt
Gucken wir uns das Ganze am Beispiel des Einzelspalts an. Beim Einzelspalt haben wir ein Interferenzmuster, bei dem ein starkes Maxima in der Mitte ist. Ausgehend von diesem Maximum lassen sich die Wege der Elementarwellen am Einzelspalt untersuchen, die dieses Maximum durch Überlagerung bilden. Mithilfe des Zeigerformalismus lassen sich für die unterschiedlichen Wege mit den Gangunterschieden auch unterschiedliche Zeiger zuordnen.
Die Superposition der Zeiger nach den Regeln der Vektoraddition ergibt einen resultierenden Zeiger, der proportional zur Intensität des Lichts ist.
Beim Maximum im Interferenzmuster des Einzelspalts kommt es aufgrund der Symmetrie bei der Superposition der Zeiger zu einer bekannten Form: der Cornu-Spirale.
Intensitätsverteilung mithilfe des Zeigerformalismus
Führen wir die Superposition für alle Positionen des Interferenzmusters aus, können wir eine Intensitätsverteilung aufstellen.
Im Vergleich dazu können wir uns die Formel für die Intensitätsverteilung des Interferenzmusters beim Einzelspalt angucken:
wobei ist. Vergleichen wir das, dann können wir erkennen, dass die Intensität des Lichts proportional zum Quadrat der Amplitude ist und dass die Darstellung mit den Zeigern bis auf einen Faktor den Verlauf der Intensität widerspiegelt.
Diese Methode lässt sich auch auf Experimente mit dem Doppel- oder Mehrfachspalt übertragen, sodass die Überlagerung der Elementarwellen und das Interferenzmuster untersucht werden können.
Zusammenfassung – Zeigerformalismus
- Der Zeigerformalismus ist eine Methode zur Beschreibung von periodischen Vorgängen. Mit diesem Modell lassen sich in der Physik vor allem auch Phänomene in der Wellenoptik erklären.
- Das Zeigermodell leitet sich von der Beziehung der Sinusfunktion und dem Einheitskreis ab. Jede Position auf der Sinusfunktion entspricht einem Pfeil im Einheitskreis, der einen gewissen Winkel zur Grundlinie besitzt.
- Mithilfe des Zeigermodells lassen sich Interferenzphänomene untersuchen, indem den Elementarwellen, die miteinander interferieren, unterschiedliche Zeiger aufgrund ihrer unterschiedlichen Wege zugeordnet werden.
Häufig gestellte Fragen zum Thema Zeigerformalismus
Zeigerformalismus Übung
-
Beschreibe, was auf dem Bild zu sehen ist.
-
Nenne die Schritte, die zur Herleitung der Intensitätsverteilung hinter einem schmalen Spalt mittels Zeigerformalismus notwendig sind.
-
Bestimme die Lage der Minima und Maxima im Interferenzbild.
-
Sage voraus, wie sich das Interferenzbild durch die Wahl eines breiteren Spaltes verändert.
-
Gib an, wie die allgemeingültige Theorie heißt.
-
Ermittle die Farbe des Lichtes des verwendeten Laserpointers.
8'988
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'252
Lernvideos
35'817
Übungen
32'576
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt