Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kräfteparallelogramm – rechnerische Ermittlung von Betrag und Richtung einer resultierenden Kraft

Wenn zwei Kräfte parallel wirken, kannst du ihre Gesamtkraft leicht berechnen, indem du ihre Beträge einfach addierst. Bei antiparallelen Kräften ziehst du die Beträge voneinander ab. Wenn sie senkrecht zueinander stehen, verwendest du den Satz des Pythagoras. Erfahre mehr über die Zerlegung von Kräften und ihre mathematischen Grundlagen. Interessiert? All das und noch viel mehr erfährst du im folgenden Video!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Kräfteparallelogramm – rechnerische Ermittlung von Betrag und Richtung einer resultierenden Kraft

Was ist der Betrag der resultierenden Kraft, wenn zwei Kräfte in dieselbe Richtung zeigen?

1/5
Bereit für eine echte Prüfung?

Das Resultierende Kraft Berechnen, Kräfteparallelogramm Rechnerisch Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.7 / 43 Bewertungen
Die Autor*innen
Avatar
Jochen Kalt
Kräfteparallelogramm – rechnerische Ermittlung von Betrag und Richtung einer resultierenden Kraft
lernst du in der Sekundarstufe 4. Klasse - 5. Klasse

Grundlagen zum Thema Kräfteparallelogramm – rechnerische Ermittlung von Betrag und Richtung einer resultierenden Kraft

Kräfteaddition mit dem Kräfteparallelogramm

Du weißt schon, wie man Kräfte, die am selben Punkt eines Körpers angreifen, mit einem Kräfteparallelogramm zeichnen und so die resultierende Kraft bestimmen kann. Aber wie kann man die Stärke der resultierenden Kraft ermitteln?

Damit wollen wir uns im Folgenden genauer beschäftigen.

Kräfteparallelogramm – Kräfte berechnen einfach erklärt

Parallele Kräfte

Wir wollen zunächst den Fall betrachten, dass zwei Kräfte in dieselbe Richtung zeigen. Das kannst du dir zum Beispiel so vorstellen, dass ein Segelboot mit der Strömung fährt. Dann zeigen die Kraft, die der Wind ausübt (F1)(\vec{F}_1), und die Kraft der Strömung (F2)(\vec{F}_2) in dieselbe Richtung. Ihre Kraftpfeile werden dann aneinander gelegt. Da die Längen der Kraftpfeile den Stärken der Kräfte entsprechen, entspricht auch die Länge des resultierenden Pfeiles der Stärke der Gesamtkraft. Man nennt die Länge eines Kraftpfeiles auch seinen Betrag. Den Betrag eines Vektors F\vec{F} kannst du durch vertikale Striche anzeigen: F|\vec{F}|.

Rechnerisch ist die Gesamtkraft dann einfach die Summe der Beträge der beiden Teilkräfte:

FRes=F1+F2|\vec{F}_{Res}| = |\vec{F}_1| + |\vec{F}_2|

Antiparallele Kräfte

Wie verhält es sich, wenn die Kräfte antiparallel sind, also in genau entgegengesetzte Richtungen zeigen? Das kannst du dir wieder anhand eines Segelbootes vorstellen – allerdings segelt es dieses Mal gegen die Strömung. Das bedeutet, dass die Kraftpfeile in entgegengesetzte Richtungen zeigen. In diesem Fall musst du die Kraftpfeile übereinander legen, sodass die Spitze des kürzeren auf dem Ende des längeren Pfeils liegt. Die Resultierende entspricht dann dem überstehenden Ende des längeren Pfeils. Die Stärke der resultierenden Kraft ist in diesem Fall die Differenz der beiden entgegengesetzten Kräfte:

FRes=F1F2|\vec{F}_{Res}| = |\vec{F}_1| - |\vec{F}_2|

Wenn die Windkraft F1\vec{F}_1 stärker ist als die Kraft der Strömung F2\vec{F}_2, fährt das Segelboot in Richtung des Windes. Ist allerdings F2\vec{F}_2 größer, wird es von der Strömung in die entgegengesetzte Richtung getrieben.

Zwei Kräfte im rechten Winkel zueinander

Was passiert, wenn die Strömung senkrecht zur Windrichtung verläuft? In diesem Fall stehen die Kraftpfeile in einem rechten Winkel aufeinander und das Kräfteparallelogramm ist ein Rechteck. Der Pfeil der resultierenden Kraft ist dann die Diagonale dieses Rechtecks und zugleich die Hypotenuse des rechtwinkligen Dreiecks mit den Katheten F1\vec{F}_1 und F2\vec{F}_2

Kräfteaddition mit dem Kräfteparallelogramm

Die Länge des Kraftpfeils FRes\vec{F}_{Res} lässt sich dann einfach über den Satz des Pythagoras berechnen:

Fres=F12+F22|\vec{F}_{res}| = \sqrt{|\vec{F}_1|^{2} + |\vec{F}_2|^{2}}

Du kannst in diesem Fall auch den Winkel α\alpha, den die resultierende Kraft mit dem Kraftpfeil F1\vec{F}_1 einschließt, bestimmen. So erhältst du die Richtung, in die die resultierende Kraft wirkt. Dazu nutzen wir die Definition des Sinus und bilden die Umkehrfunktion, den Arkussinus:

sin(α)=F2Fresα=arcsin(F2Fres)sin(\alpha) = \frac{|\vec{F}_2|}{|\vec{F}_{res}|} \Rightarrow \alpha = arcsin \Bigl( \frac{|\vec{F}_2|}{|\vec{F}_{res}|} \Bigr)

Zwei Kräfte in beliebigem Winkel zueinander

Ist der Winkel α\alpha zwischen den Kräften F1\vec{F}_1 und F2\vec{F}_2 kein rechter, sondern ein beliebiger Winkel, müssen wir den Kosinussatz für beliebige Dreiecke nutzen. Die resultierende Kraft lässt sich dann folgendermaßen berechnen:

Fres=F12+F22+2F1F2cos(α)|\vec{F}_{res}| = \sqrt{|\vec{F}_1|^{2}+|\vec{F}_2|^{2} + 2|\vec{F}_1||\vec{F}_2|cos(\alpha)}

Teste dein Wissen zum Thema Resultierende Kraft Berechnen, Kräfteparallelogramm Rechnerisch!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Rechnerische Kräftezerlegung mit dem Kräfteparallelogramm

So, wie wir Kräfte zeichnerisch in Teilkräfte zerlegen können, lassen sich Kräfte auch rechnerisch in einzelne Komponenten zerlegen. Wir betrachten das folgende Beispiel: Ein kleiner Würfel, zum Beispiel ein Bauklotz, liegt auf einer schrägen Fläche, die eine Steigung von α\alpha aufweist. Die einzige Kraft, die auf ihn wirkt, ist seine Gewichtskraft FG\vec{F}_G. Der Kraftpfeil dieser Kraft zeigt vertikal nach unten. Wir wollen wissen, welcher Anteil der Gewichtskraft dafür sorgt, dass der Bauklotz nach unten rutscht (Hangabtriebskraft FH\vec{F}_H), und welcher Anteil ihn auf die Oberfläche drückt (Normalkraft FN\vec{F}_N). Dazu zeichnen wir zunächst ein Kräfteparallelogramm.

Die rechnerische Zerlegung von Kräften mit dem Kräfteparallelogramm

Sowohl FH\vec{F}_H als auch FN\vec{F}_N bilden gemeinsam mit der Gewichtskraft FG\vec{F}_G ein rechtwinkliges Dreieck. In beiden rechtwinkligen Dreiecken taucht nach dem Strahlensatz der Steigungswinkel α\alpha der schrägen Fläche auf. Wir können den Winkel α\alpha also nutzen, um die Komponenten mithilfe des Sinus und des Kosinus zu berechnen. Für die Normalkraft gilt:

FN=FGcos(α)|\vec{F}_N| = |\vec{F}_G| \cdot cos(\alpha)

Für die Hangabtriebskraft gilt:

FH=FGsin(α)|\vec{F}_H| = |\vec{F}_G| \cdot sin(\alpha)

Anhand dieser Gleichungen sehen wir auch, welchen Einfluss der Winkel α\alpha hat. Stellen wir uns vor, die Schräge wäre senkrecht, der Winkel α\alpha also 9090^{\circ}. Dann wäre der Cosinus 00 und der Sinus 11 – die Normalkraft wäre also ebenso 00, während die Hangabtriebskraft FH\vec{F}_H gleich der Gewichtskraft FG\vec{F}_G wäre.

Über das Video Kräfteparallelogramm – rechnerische Ermittlung von Betrag und Richtung einer resultierenden Kraft

In diesem Video lernst du, wie du mit einem Kräfteparallelogramm Kräfte rechnerisch zerlegen oder kombinieren kannst. Dir werden einige Beispiele für verschiedene Kräftepaare gezeigt. Du lernst außerdem die notwendigen Formeln kennen. Neben Text und Video findest du Übungen, mit denen du dein neues Wissen gleich testen kannst.

Transkript Kräfteparallelogramm – rechnerische Ermittlung von Betrag und Richtung einer resultierenden Kraft

Hallo und herzlich Willkommen. Wenn sich ein Segelboot im Wasser bewegt, wirken verschiedene Kräfte auf das Boot ein. Aber wie berechnet man dann diejenige Kraft, die das Boot antreibt und die Richtung vorgibt? Genau darum geht es in diesem Video zum Thema rechnerische Ermittlung der resultierenden Kraft. Als erstes wirst du lernen, was man unter Superposition versteht. Anschließend geht es darum, wie man resultierende Kräfte mit der zeichnerischen Methode ermitteln kann. Und danach wirst du lernen, wie man rechnerisch die resultierende Kraft ermittelt. Und zum Schluss werde ich dir noch zeigen, dass man Kräfte auch zerlegen kann. Und damit kann es auch schon losgehen. Als erstes geht es darum, was man unter Superposition versteht. Es kommt vor, dass in einem Körper mehrere Kräfte wirken. Diese Kräfte kann man auch alle einzeichnen. Bei mehreren Kräften verliert man aber schnell den Überblick und kann nicht mehr voraussagen, wie sich der Körper verhalten wird. Da greift die Superposition von Kräften. Sie besagt, dass verschiedene Kräfte, die alle einzeln auf den gleichen Körper wirken, dasselbe bewirken, als würde lediglich ihre Summe auf den Körper wirken. Man addiert also alle einzelnen Kräfte und erhält so die resultierende Kraft Fres. Immer, wenn mehrere Kräfte auf einen Körper wirken, kann man eine resultierende Kraft berechnen. Dafür müssen die Kräfte nicht alle im gleichen Punkt angreifen. Die resultierende Kraft kann dabei zeichnerisch und rechnerisch ermittelt werden. Wir werden uns jetzt als erstes die zeichnerische Methode ansehen. Die einfachste Art eine resultierende Kraft zu ermitteln, ist die zeichnerische Methode. Du wirst das hier am Beispiel des Segelbootes sehen. Die Kräfte greifen im Schwerpunkt S des Segelbootes an. Der Wind kommt mit der Kraft Fw an. Außerdem wirkt noch eine Kraft auFGrund der Strömung. Fs. Um eine Kraft zu symbolisieren, nutzt man Pfeile. Die Länge des Pfeiles gibt dabei den Betrag der Kraft an. Um zu wissen, welche Länge welcher Kraft entspricht, muss man einen Maßstab einführen. So kann man zum Beispiel festlegen, dass ein Zentimeter 100 Newton entspricht. Die Richtung in der der Pfeil zeigt, ist die gleiche Richtung, in die die Kraft wirkt. Kräfte sind nämlich Vektoren und haben als solche einen Betrag und eine Richtung. In dem Punkt, an dem der Pfeil anfängt, greift die Kraft an. Hat man nun einen Körper, an dem mehrere Kräfte angreifen und will die resultierende Kraft zeichnerisch ermitteln, so setzt man alle wirkenden Kräfte zusammen. Das heißt, dass man durch parallel verschieben die Pfeile so einzeichnet, dass der Angriffspunkt der einen Kraft am Ende des Pfeils der anderen Kraft liegt. So setzt man alle wirkenden Kräfte zusammen. Das nennt man dann Kräfteparallelogramm. Um nun die resultierende Kraft einzuzeichnen, verbindet man den Anfangspunkt der zusammengesetzten Pfeile mit dem Ende. Die resultierende Kraft ist die Summe aller einzelnen Kräfte. Es ist das gleiche, ob Fw und Fs an einem Körper angreifen oder nur die daraus resultierende Kraft Fres. Die zeichnerische Methode ist eine einfache und schnelle Art, die resultierende Kraft zu ermitteln. Allerdings kommt es bei dieser Methode immer zu gewissen Fehlern, da man die Kräfte nicht beliebig genau einzeichnen kann. Kennt man alle nötigen Größen, so ist es genauer, die resultierende Kraft rechnerisch zu ermitteln. Um zu lernen, wie man resultierende Kräfte rechnerisch ermitteln kann, betrachten wir vier unterschiedliche Fälle von Kombinationen von Kräften. Als erstes schauen wir uns den Fall an, dass zwei Kräfte in die gleiche Richtung zeigen. In diesem Fall addiert man die Beträge der Kräfte, um die resultierende Kraft zu berechnen. Die resultierende Kraft zeigt in die gleiche Richtung, wie F1 und F2. Es ist dann: Fres = F1 + F2. So ein Fall tritt zum Beispiel auf, wenn ein Segelboot Wind von hinten hat und mit der Strömung fährt. Der zweite Fall, den wir betrachten, ist der, dass zwei Kräfte in genau entgegengesetzte Richtung zeigen. Ist das der Fall, so ergibt sich die resultierende Kraft aus der Differenz der Beträge der Einzelbeträge F1 - F2. Das ist auch anschaulich klar. Stell dir vor, F1 wirkt alleine. Kommt jetzt eine weitere Kraft in genau entgegengesetzte Richtung dazu, so nimmt F1 genau um den Betrag der anderen Kraft ab. So ein Fall tritt zum Beispiel auf, wenn ein Segelboot Wind von hinten hat und gegen die Strömung fährt. Eine weitere Möglichkeit, wie sich Kräfte kombinieren können, ist, dass sie im rechten Winkel zueinander wirken. In diesem Fall ergibt die Summe aus F1 und F2 ein rechtwinkliges Dreieck. Nach dem Satz des Pythagoras wissen wir, dass die Hypotenuse c eines rechtwinkligen Dreiecks gleich der Wurzel aus den Quadraten der Katheten a und b ist. Das kann man direkt auf Kräfte übertragen. Die Hypotenuse ist in unserem Fall die resultierende Kraft Fres. Der rechte Winkel wird eingeschlossen zwischen F1 und F2. Es gilt also: Fres = Wurzel(F12 + F22). Wie du siehst, schließen F1 und Fres den Winkel Alpha ein. Alpha kann man dann über den Sinus berechnen. Es gilt: sin(Alpha) = F2/Fres. Alpha = arcsin(F2/Fres) Beim Segelboot kommt der Fall, dass zwei Kräfte senkrecht aufeinander stehen dann vor, wenn die Strömung senkrecht zur Windrichtung steht. Der allgemeinste Fall ist, dass zwei Kräfte in beliebigem Winkel Alpha zueinander wirken. Dabei wird der Winkel Alpha zwischen den Vektoren auFGespannt. Die resultierende Kraft ergibt sich dann aus Wurzel(F12 + F22 + 2F1F2cos(Alpha)). Deshalb beschränken wir uns in diesem Fall für die Richtung auf die zeichnerische Lösung. Im Fall des Segelboots würden die Richtung von Wind und Strömung dann so aussehen. So, wie man Kräfte zu einer resultierenden Kraft zusammensetzen kann, kann man eine resultierende Kraft auch in mehrere Einzelkräfte zerlegen. Das kann praktisch sein, um die Wirkung einer Kraft in eine bestimmte Richtung zu bestimmen. Das werden wir uns jetzt an einem Beispiel klar machen. Wir betrachten einen Körper, der sich auf einer schiefen Ebene befindet. Die Ebene hat eine Steigung vom Winkel Alpha. Auf dem Körper wirkt die Gewichtskraft FG. Will man jetzt wissen, mit welchen Betrag die Kraft in Abwärtsrichtung zeigt, so muss man die Gewichtskraft zerlegen. In welche Richtungen wir sie zerlegen, ist dabei uns überlassen. Wir wählen die Richtungen so, dass die Rechnung möglichst einfach ist. Dazu zerlegen wir FG in die Hangabtriebskraft FH und die Normalkraft FN. FH wirkt parallel zur geneigten Ebene. FN steht senkrecht darauf. Durch parallel verschieben der Linien erhalten wir wieder ein Kräfteparallelogramm. FH und FN zeigen jetzt jeweils bis zu dem Punkt, an dem sich die gestrichelten Linien schneiden. Die Summe aus FH und FN ergibt FG. Um die Zusammenhänge klarer darstellen zu können, zeichnen wir die Kräfte nochmal außerhalb der Zeichnungen. FN und FH stehen senkrecht aufeinander. Die Summe der beiden ergibt FG. Zwischen FG und FN ist der Winkel Alpha aufgespannt. Da es sich hier um ein rechtwinkliges Dreieck handelt, können wir die einzelnen Kräfte nach den Gesetzen von Sinus und Cosinus berechnen. Die Gewichtskraft ist die Hypotenuse des Dreiecks. FN ist die Ankathete. FH die Gegenkathete. Es gilt: sin(Alpha) = Gegenkathete/Hypotenuse. Daraus folgt, dass FH = FGsin(Alpha). Außerdem gilt, cos(Alpha) = Ankathete/Hypotenuse. Daraus folgt wiederum: FN = FGcos(Alpha). Der Fall, dass zwei Kräfte senkrecht aufeinander stehen, ist die wichtigste Anwendung der Zerlegung von Kräften. Ein weiteres Beispiel: Ein Gewicht hängt an Drahtseilen zwischen zwei Wänden. Am Gewicht wirkt die Gewichtskraft FG senkrecht nach unten. Da die Berechnung der Beträge in diesem Fall sehr kompliziert ist, beschränken wir uns hier auf die zeichnerische Lösung des Problems. Um zu bestimmen, welche Zugkräfte die Seile aushalten müssen, muss man wissen, welche Kraft entlang des Seiles wirkt. Dazu zerlegt man die Gewichtskraft FG im zwei Einzelkräfte F1 und F2. Sie zeigen entlang der Richtung der Seile und stehen nicht senkrecht aufeinander, sondern in einem willkürlichen Winkel. Die Summe aus F1 und F2 ergibt FG. So weiß man, welche Zugkräfte die Seile aushalten müssen um dieses Gewicht zu tragen. So, was hast du eben gelernt? Das Prinzip der Superposition besagt, dass verschiedene Kräfte, die alle einzeln auf den gleichen Körper wirken, dasselbe bewirken, als würde nur eine einzelne resultierende Kraft auf den Körper wirken. Die resultierende Kraft ist die Summe aus allen Einzelkräften. Zeigen zwei Kräfte in die gleiche Richtung, so addiert man die Kräfte einfach, um die resultierende Kraft zu erhalten. Es ist dann Fres = F1 + F2. Zeigen zwei Kräfte in entgegengesetzte Richtungen, so ergibt sich die resultierende Kraft aus der Differenz F1 - F2. Wirken zwei Kräfte im rechten Winkel zueinander, so gilt: Fres = Wurzel(F12 + F22). Und spannen die beiden Kräfte einen beliebigen Winkel Alpha auf, so gilt: Fres = Wurzel(F12 + F22 + 2F1F2cos(Alpha)). Man kann auch eine einzelne Kraft in mehrere Einzelkräfte zerlegen. Das kann praktisch sein, um die Wirkung einer Kraft in eine bestimmte Richtung zu bestimmen. Wir haben das an der schiefen Ebene betrachtet. Das war es zum Thema rechnerische Ermittlung der resultierenden kraft. Ich hoffe, du hast etwas gelernt. Tschüss und bis zum nächsten Mal.

9 Kommentare
  1. Hallo Lukas/Johann B,

    hier bedient sich die Physik einer Gleichung aus der Mathematik. Mit dieser Gleichung kann man die Länge der Diagonalen eines Parallelogramms bestimmen.

    Von Karsten S., vor mehr als 6 Jahren
  2. Wie kommt man auf die Gleichung (Minute 6:43), dass Fres= Wurzel aus (F₁²+F₂²+2∙F₁∙F₂∙cos(α)) ist.

    Von Lukas/Johann B., vor mehr als 6 Jahren
  3. Super! Danke =D

    Von Delta y., vor mehr als 7 Jahren
  4. Die Summe aus Fh und Fn ergibt Fg?? (8:15 Minuten)
    Wir haben hier ein rechtwinkliges Dreieck.. ist das wirklich richtig..
    ich muss doch den Pythagoras anwenden, oder nicht?

    Von Tobib1992, vor fast 8 Jahren
  5. Vielen Dank!
    Die Erklärung zum Kräfteparallelogramm hat zur schiefe Ebene super geholfen.

    Von Chris Biermann, vor fast 10 Jahren
Mehr Kommentare

Kräfteparallelogramm – rechnerische Ermittlung von Betrag und Richtung einer resultierenden Kraft Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kräfteparallelogramm – rechnerische Ermittlung von Betrag und Richtung einer resultierenden Kraft kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'152

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'604

Lernvideos

35'617

Übungen

32'360

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden