Krümmung der Raumzeit
- Einsteins Relativitätstheorien im Überblick
- Spezielle Relativitätstheorie
- Das Prinzip von der Konstanz der Lichtgeschwindigkeit
- Geschwindigkeitsaddition
- Längenkontraktion
- Massenzunahme
- Zeitdilatation
- Allgemeine Relativitätstheorie
- Häufig gestellte Fragen zum Thema Einsteins Relativitätstheorien im Überblick
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Krümmung der Raumzeit
Einsteins Relativitätstheorien im Überblick
Albert Einstein legte 1905 und 1915 zwei Arbeiten vor, die heute unter dem Namen Spezielle Relativitätstheorie und Allgemeine Relativitätstheorie bekannt sind. In diesem Text sollen im Überblick einige der Voraussagen beider Theorien vorgestellt werden.
Spezielle Relativitätstheorie
Die Spezielle Relativitätstheorie befasst sich mit der Betrachtung von Inertialsystemen, die sich relativ zueinander geradlinig gleichförmig bewegen.
Im Zusammenhang mit der Ausbreitung des Lichts gab es Ende des 19. Jahrhunderts das Problem, dass sich keinerlei Änderung der Lichtgeschwindigkeit nachweisen ließ, auch wenn die Lichtquelle sich selbst bewegte.
Einstein löste dieses Problem, indem er es als Tatsache akzeptierte und die erstaunlichen Konsequenzen untersuchte.
Das Prinzip von der Konstanz der Lichtgeschwindigkeit
Eines der revolutionärsten Konzepte in Einsteins Spezieller Relativitätstheorie ist das Prinzip von der Konstanz der Lichtgeschwindigkeit. Es besagt, dass die Lichtgeschwindigkeit im Vakuum für alle Beobachter, unabhängig von deren Bewegungszustand oder dem Bewegungszustand der Lichtquelle, immer gleich ist und einen Wert von etwa 299.792 Kilometern pro Sekunde hat.
Einstein sagte voraus, dass die Lichtgeschwindigkeit eine fundamentale Grenze darstellt: Sie kann von keinem Objekt überschritten werden. Diese Annahme hat tiefgreifende Auswirkungen auf unser Verständnis von Raum und Zeit. Die Konstanz der Lichtgeschwindigkeit führt direkt zu Phänomenen wie Zeitdilatation und Längenkontraktion, die beobachtet werden können, wenn sich Objekte mit Geschwindigkeiten nahe der Lichtgeschwindigkeit bewegen. Das Festhalten an dieser Konstanz ermöglichte Einstein die Entwicklung einer kohärenten Theorie, die viele zuvor unerklärliche physikalische Phänomene aufklärte und unsere Sichtweise auf das Universum grundlegend veränderte.
Geschwindigkeitsaddition
Wenn du dich in einem Zug bewegst, der mit $\pu{100 km//h}$ fährt und du mit einer Geschwindigkeit von $\pu{5 km//h}$ durch den Zug läufst, dann bewegst du dich für einen Beobachter am Bahndamm mit $\pu{105 km//h}$ oder $\pu{95 km//h}$, je nachdem in welche Richtung du läufst. In der Welt der Relativitätstheorie funktioniert das allerdings anders. Die Geschwindigkeiten, insbesondere wenn sie sich der Lichtgeschwindigkeit annähern, addieren sich nicht einfach. Dies zeigt uns, dass das Universum bei hohen Geschwindigkeiten nach einem anderen Regelwerk spielt, in dem die Lichtgeschwindigkeit eine unüberwindbare Grenze darstellt.
Zwei relativistische Geschwindigkeiten $v_1$ und $v_2$ werden entsprechend der Formel
$v= \dfrac{v_1 + v_2}{1 + \dfrac{v_1 \cdot v_2}{c^2}}$
addiert.
Längenkontraktion
Auch die Länge von Objekten verhält sich in der Relativitätstheorie anders, als man es normalerweise in der Natur beobachten kann. Dies besagt die sogenannte Längenkontraktion der Relativitätstheorie:
Die Längenkontraktion ist die Verkürzung der Länge eines Objekts, wie sie von einem Beobachter wahrgenommen wird, der sich relativ zu diesem Objekt bewegt oder in Ruhe ist.
Die Verkürzung kann mit der Formel $L = L_0 \sqrt{1-\dfrac{v^2}{c^2}}$ berechnet werden.
Diese Verkürzung tritt nur in der Bewegungsrichtung auf und wird nur beobachtet, wenn das Objekt sich mit Geschwindigkeiten bewegt, die signifikant im Verhältnis zur Lichtgeschwindigkeit stehen. Das folgende Beispiel veranschaulicht diesen Zusammenhang.
Massenzunahme
Die Massenzunahme ist ein weiteres Ergebnis der Relativitätstheorie. Sie besagt, dass die Masse eines Objekts mit seiner Geschwindigkeit zunimmt. Je näher die Geschwindigkeit eines Objekts der Lichtgeschwindigkeit kommt, desto größer wird seine Masse. Dies führt zu einer immer größeren benötigten Kraft, um die Geschwindigkeit weiter zu steigern.
Zeitdilatation
Vielleicht das erstaunlichste Phänomen der Relativitätstheorie ist die Zeitdilatation. Wenn du in einem Raumschiff reisen würdest, das sich mit nahezu Lichtgeschwindigkeit bewegt, würde die Zeit für dich langsamer vergehen als für jemanden, der auf der Erde zurückbleibt. Dies führt zu dem paradoxen Ergebnis, dass du bei deiner Rückkehr auf die Erde feststellen würdest, dass dort mehr Zeit vergangen ist, als du selbst erlebt hast.
Allgemeine Relativitätstheorie
Die Allgemeine Relativitätstheorie, entwickelt von Albert Einstein, revolutionierte unser Verständnis vom Universum. Sie geht weit über die Vorstellung von Gravitation als eine einfache Anziehungskraft zwischen Massen hinaus. Einstein zeigte uns, dass die Schwerkraft eigentlich eine Folge der Krümmung von Raum und Zeit ist, die durch Massen verursacht wird.
Die Allgemeine Relativitätstheorie beschreibt Gravitation nicht als eine Kraft im herkömmlichen Sinn, sondern als eine Krümmung der Raumzeit, die durch die Verteilung von Masse hervorgerufen wird. Raum und Zeit sind miteinander zu einem vierdimensionalen Gefüge, der Raumzeit, verbunden.
Stell dir das Universum als ein großes, elastisches Tuch vor. Wenn du nun eine schwere Kugel, wie etwa eine Metallkugel, in die Mitte dieses Tuchs legst, sinkt sie ein und verformt das Tuch um sich herum. Kleinere Kugeln, die in die Nähe der großen Kugel gelegt werden, rollen aufgrund der Krümmung des Tuchs auf die größere Kugel zu. Diese Krümmung des Tuchs ähnelt der Krümmung der Raumzeit um massive Objekte wie Sterne und Planeten und die Bewegung der kleineren Kugeln zur größeren Kugel hin entspricht der Bewegung von Objekten, die der Gravitation folgen.
Die folgende Abbildung verdeutlicht die Veranschaulichung am Beispiel der Erde in unserer Raumzeit:
Was ist Raumzeit?
Die Raumzeit ist ein Konzept, das Raum und Zeit als ein einziges, vierdimensionales Kontinuum beschreibt. In dieser Vorstellung werden die bekannten drei Raumdimensionen mit der Dimension der Zeit zu einer vierdimensionalen Struktur verbunden.
Massive Objekte wie Sterne und Planeten verursachen eine Krümmung in dieser Struktur, ähnlich einer Kugel, die auf ein gespanntes Tuch gelegt wird und dieses eindellt. Die Gravitation ist dann nicht mehr eine unsichtbare Kraft, die Objekte anzieht, sondern die natürliche Bewegung von Objekten entlang der gekrümmten Bahnen der Raumzeit.
Häufig gestellte Fragen zum Thema Einsteins Relativitätstheorien im Überblick
Transkript Krümmung der Raumzeit
Hallo und herzlich willkommen bei einem Video von Dr. Psi. Unser heutiges Thema wird ein wenig abstrakt bleiben, genauso wie es die Relativitätstheorie überhaupt ist. Oder bewegen wir uns etwa gelegentlich mit Lichtgeschwindigkeit? Na also. Nun geht es um die Krümmung der Raumzeit. Klar, nicht wahr. Krümmung der Raumzeit was steckt dahinter? Nun, damit wollen wir uns heute ein wenig beschäftigen. Nun denn, zuerst müssen wir jedoch ein paar Begriffe klären. Aus der klassischen Physik sind die drei Dimensionen des Raumes und die Zeit als vierte Dimension bekannt. Die Längen- und Zeitmessungen sollen unabhängig vom Bezugssystem sein. Und die Zeit ist eine vom Bewegungszustand des Beobachters unabhängige Größe. Deswegen schreibt man auch gelegentlich hier 3 + 1, insgesamt also auch vier Dimensionen. Legen wir nun die Relativitätstheorie zu Grunde und betrachten die Raum- und Zeitkoordinaten dort als eng miteinander verwogen, so bilden sie eine vierdimensionale Raumzeit. Ja, gelegentlich sagt man auch dazu ein Raum-Zeit-Kontinuum. Damit wird die Zeit eine Koordinate wie jede andere des Raumes auch. Und es können wie beim Raum in der Zeit perspektivische Änderungen der Zeitkoordinaten auftreten. Denkt nur an die Zeitdilatation und die Relativität der Gleichzeitigkeit. Ja, so hätten wir ein paar Begriffe der Raumzeit etwas näher beleuchtet. Und nun kommen wir dazu, diese etwas abstrakte Krümmung der Raumzeit zu betrachten. Betrachten wir zunächst die Raumzeit einmal ohne die Anwesenheit von Materie und unterdrücken eine der Raumdimensionen und auch die Zeitdimension. Was dann übrig bleibt sind zwei Dimensionen. Diese Vorstellung führt zu einer einfachen Betrachtung der Raumzeit als 2D-Modell. Du siehst hier ein solches 2D-Modell. In der Literatur wird diese Fläche, die du hier siehst, oft mit einer dehnbaren Gummihaut verglichen. Wird nun auf diese Gummihaut eine Kugel gelegt, so gibt es eine Beule oder Delle. Wenn wir diese Vorstellung auf unsere Raumzeit übertragen, so können wir dies mit den Aussagen der Relativitätstheorie verbinden und kommen zu einer sehr wichtigen Aussage, nämlich Gravitation krümmt den Raum. Ja, damit haben wir die Überschrift sozusagen erläutert. Die Kugel, die wir hier sehen, stellt Gravitation dar und diese krümmt eben den Raum. Ja, welche Konsequenzen hat das? Das wollen wir uns in der nächsten Szene einmal anschauen. Noch einmal zurück zu unserem 2D-Modell, welches ja eine Vereinfachung unserer vierdimensionalen Raumzeit ohne Anwesenheit von Masse beziehungsweise Materie war. In diesem Koordinatensystem gilt die wohl bekannte euklidische Geometrie, Parallelen verlaufen ohne Schnittpunkt. Die Winkelsumme im Dreieck ist, na du weißt es sicherlich, 180°, richtig. Und die kürzeste Verbindung zweier Punkte ist eine Gerade. Und nun kommt Masse bzw. Materie ins Spiel. Und die Raumzeit ist gekrümmt. Was bedeutet das für die Geometrie? Nun können wir formulieren, die allgemeine Relativitätstheorie, ich kürze mal hier ab, findest du auch oft in der Literatur. Allgemeine Relativitätstheorie ist eine Theorie der Geometrie des Raumes. Und wir beschränken uns mal bei der Betrachtung dieser Geometrie des Raumes auf die Abstandsbestimmung und kommen auf den Begriff der Geodäten, die die kürzeste Verbindung zweier Punkte darstellen. Nun, was sind Geodäten auf einer gekrümmten Oberfläche? Auf der normalen Oberfläche, ebenen Oberfläche, ist es klar. Nun, wir schauen uns mal hier einen Kegel an. Und da haben wir einen bestimmten Punkt markiert und fragen uns, wie verläuft die kürzeste Verbindung dieses Starrpunktes um die Spitze des Kegels mit sich selber. Nun, wir können, wenn wir das Netz uns anschauen, die gerade gemachte grüne Linie, die wir so als kürzeste Verbindung uns vorstellen, hier wiederfinden, aber wir können auch hier eine Gerade ziehen. Du siehst diese rote Gerade. Und wenn wir aus dem Netz des Kegels wieder den Kegel aufbauen, siehst du diese Geodäte, die eine etwas schlangenförmige Schlaufe darstellt. Das wäre also eine kürzeste Verbindung des einen Punktes mit sich selber. Nun, diese Geodäten findest du auch auf der Kugeloberfläche. Das sind die Großkreise. Und auf solchen Großkreisen bewegen sich die Flugzeuge bzw. die Schiffe. Nun wollen wir wieder zu Experimenten zurückkommen, die etwas mit der Raumzeit zu tun haben. Ja, kommen wir jetzt zu einer Konsequenz der Krümmung der Raumzeit, die wir schon aus den Experimenten zur Bestätigung der allgemeinen Relativitätstheorie kennen, nämlich die Lichtablenkung durch Gravitation. Wir sehen hier in einem ersten Bild, dass im Normalfall zwischen zwei Fixsternen ein Beobachtungswinkel, sagen wir Alpha, festgestellt wird. Das zweite Bild zeigt die Verhältnisse, die bei einer Sonnenfinsternis, bei sonst gleichen Bedingungen beobachtet werden. Der Stern eins hat nun infolge der Lichtablenkung eine scheinbar andere Position eingenommen. Der Beobachtungswinkel Beta ist nun scheinbar größer als Alpha. Nun, das Bild drei zeigt die Betrachtung unter Zugrundelegung der gekrümmten Raumzeit, das heißt, unser 2D-Modell mit einer Delle. Und hier kann dargestellt werden, wie eben diese Massen zu einer Verzerrung der Raumzeit führen und den Verlauf der Geodäten ändert. Und damit wird also die Geometrie des Raumes beeinflusst. Letztenendes kann durch diese allgemeine Betrachtung der Veränderung der Geometrie im Bereich von riesigen Abmessungen die ganze Entwicklung unseres Universums erklärt werden. Aber damit kommen wir in den Bereich der Kosmologie und das ist nun noch abstrakter und ganz weit weg. Und schon allein Krümmung der Raumzeit stellt ja eine gewisse Vorstellungskraft voraus. Nun, fassen wir kurz zusammen. Wir haben ein paar Begriffe geklärt, was Raumzeit ist, was Krümmung der Raumzeit durch Anwesenheit von Materie bedeutet, haben ein Beispiel, die Lichtablenkung durch Gravitation, behandelt. Ja, das war es wieder für heute und ich hoffe, du hast etwas verstanden und ich würde mich freuen, wenn wir uns bald wieder sehen bei einem Video von Dr. Psi.
Krümmung der Raumzeit Übung
-
Stelle Raum und Zeit in der klassischen Physik und in der Relativitätstheorie gegenüber.
TippsAus deinem Alltag kennst du die Gesetzmäßigkeiten der klassischen Mechanik.
In großen Dimensionen und bei hohen Geschwindigkeiten greift hingegen die Relativitätstheorie.
LösungAus deiner alltäglichen Erfahrung dürften dir die Beobachtungen der klassischen Mechanik vertraut sein: Für uns existieren Raum und Zeit unabhängig voneinander. Messungen in der Physik sind unabhängig vom Bezugssystem, das zur Beschreibung gewählt wird, und von dem aus die Beobachtungen erfolgen. Dies liegt daran, dass die Geschwindigkeiten, mit denen sich die Gegenstände in unserem Umfeld und wir selbst bewegen, vergleichsweise klein sind.
Betrachtet man jedoch Objekte in größeren Dimensionen und Geschwindigkeiten, die bis zur Lichtgeschwindigkeit reichen, können die Beschreibungen der klassischen Mechanik nicht mehr angewendet werden. Ort und Zeit beeinflussen sich gegenseitig. Die Relativitätstheorie verwendet daher ein vierdimensionales Raum-Zeit-Kontinuum zur Beschreibung von Ereignissen. Das ist etwas abstrakt, weil es außerhalb unserer Erfahrungswelt liegt. Aber trotzdem auch spannend. Führt uns das nicht auf wissenschaftlichem Weg näher an die Frage heran, woher wir kommen und wohin wir gehen?
-
Benenne wesentliche Eigenschaften von Objekten in der euklidischen Geometrie.
TippsHier brauchst du dein Wissen aus dem Mathematikunterricht.
LösungIn der euklidischen Geometrie gibt es einige markante Eigenschaften, an denen du sie besonders gut identifizieren kannst. Diese sind hier aufgeführt: Parallelen verlaufen ohne Schnittpunkt, die Innenwinkelsumme eines Dreiecks beträgt 180 Grad und die Geodäte ist eine Gerade.
Besitzt ein Raum keine euklidische Geometrie, so gelten diese Eigenschaften in der Regel nicht mehr. So verlaufen beispielsweise auf einer Kugeloberfläche Geraden nie schnittpunktlos, die Innenwinkelsumme in einem Dreieck ist größer als 180 Grad und die Geodäte zwischen zwei Punkten ist keine Gerade, sondern ein Ausschnitt eines Großkreises.
-
Beschreibe das folgende Modell und was damit veranschaulicht werden kann.
TippsWoraus besteht das Modell selbst und was verdeutlicht es anschaulich?
LösungDas abgebildete Modell ist eine sehr bekannte Art, die Krümmung der Raumzeit zu veranschaulichen.
Eine dehnbare Gummihaut (hier grün) verdeutlicht dabei (vereinfachte) Raumzeit. Die Kugel stellt Gravitation dar, also zum Beispiel einen massereichen Himmelskörper wie die Erde (siehe Abbildung).
Das Modell ist ein 2D-Modell der Raumzeit. Es stellt nur zwei der drei Ortskoordinaten dar und keine zeitliche Dimension.
Befindet sich keine Kugel auf der Gummihaut, so ist die Haut eben. Sie folgt, ebenso wie die Raumzeit, die sie veranschaulicht, den Gesetzen der euklidischen Geometrie.
Diese Geometrie verändert sich jedoch, wenn eine Kugel (also in der Realität ein massereicher Körper) hinzukommt. In seiner Nähe wird die Membran verbogen, jedoch nicht zerrissen, also die Raumzeit gekrümmt. Dann gelten die geometrischen Gesetze der allgemeinen Relativitätstheorie.
-
Erkläre Zusammenhänge und Sinn des gezeigten Experimentes.
TippsWas ist die kürzeste Verbindung zwischen zwei Punkten in einem euklidischen Raum und in einem gekrümmten Raum?
LösungWie auf der Abbildung zu sehen ist, verändert die Gravitation der Sonne den Weg des Lichtes zur Erde. Das Licht wird abgelenkt, der Beobachter jedoch rekonstruiert die Fixsternposition nach euklidischen Prinzipien. Daher erscheint der Fixstern unter einem größeren Beobachtungswinkel als ohne Sonnenfinsternis, die die Raumzeitkrümmung hervorruft.
Mit Hilfe dieses Effektes wurde ein wichtiger Beleg für die Richtigkeit der allgemeinen Relativitätstheorie erbracht.
-
Gib an, wie die Geodäte eines Kegels ermittelt werden kann.
TippsWie kannst du den dreidimensionalen Kegel in zwei Dimensionen überführen?
LösungFür die Bestimmung der Geodäten von Körpern mit gekrümmten Oberflächen gibt es je nach Beschaffenheit des Körpers unterschiedliche Möglichkeiten.
Beim Kegel ist das vergleichsweise einfach, weil die Oberfläche eines Kegels (gedanklich) abgerollt werden kann. Du kannst aus einem dreidimensionalen Kegel ein Kegelnetz in zwei Dimensionen erzeugen. Gezeigt ist hier in der Abbildung das Netz des Kegelmantels. Damit befindest du dich wieder im euklidischen Raum und kannst zwischen den beiden Punkten einfach eine Gerade einzeichnen. Wickelst du das Kegelmantelnetz wieder zu einem Kegel, so zeigt die eingezeichnete Linie den Verlauf der Geodäte an.
Bastel dir doch mal selbst einen Kegel aus einem Kegelmantelnetz und suche die Geodäten.
-
Erkläre, wie du die Geodäte auf einem Zylinder ermitteln kannst.
TippsWelche Besonderheit weist ein Zylinder wie auch bestimmte andere Körper auf?
LösungGeodäten stellen jeweils die kürzeste Verbindung zwischen zwei Punkten dar. In der euklidischen Geometrie ist die Geodäte daher eine Gerade.
Auf Körpern mit gekrümmten Oberflächen jedoch verlaufen die Geodäten anders. Für die Bestimmung der Geodäten von Körpern mit gekrümmten Oberflächen gibt es je nach Beschaffenheit des Körpers unterschiedliche Möglichkeiten.
Bei Körpern, denen die Oberfläche (gedanklich) abgerollt werden kann, erfolgt die Ermittlung der Geodäte am Körpernetz. Du kannst aus einem dreidimensionalen Kegel ein Kegelnetz in zwei Dimensionen erzeugen. Genauso geht das auch mit einem Zylinder. Gezeigt ist hier in der Abbildung das Netz des Zylinders. Damit befindest du dich wieder im euklidischen Raum und kannst zwischen den beiden Punkten einfach eine Gerade einzeichnen. Wickelst du das Zylindernetz wieder zu einem Zylinder, so zeigt die eingezeichnete Linie den Verlauf der Geodäte an.
Bastel dir doch mal einen Zylinder und suche die Geodäten. Oder traust du dich gleich an eine Kugel?
8'883
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'389
Lernvideos
36'076
Übungen
32'624
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt
Bin halt auch 6
Absolut nice video
Ich bin zwar erst 6. aber finde dieses Thema wirklich interresant.