Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kirchhoffsche Gesetze – Reihen- und Parallelschaltung

Erfahre, wie die kirchhoffschen Regeln in der Elektrotechnik helfen, komplexe Schaltungen zu analysieren. Die Knotenregel besagt, dass die Summe der ein- und abfließenden Ströme an einem Punkt null ist. Mit der Maschenregel kannst du Spannungen in geschlossenen Stromkreisen bestimmen. Interessiert? Das und mehr im Text!

Inhaltsverzeichnis zum Thema Kirchhoffsche Gesetze – Reihen- und Parallelschaltung
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Kirchhoffsche Gesetze – Reihen- und Parallelschaltung

Welches Gesetz besagt, dass an einem Knoten die Summe der zufließenden Ströme gleich der Summe der abfließenden Ströme ist?

1/5
Bereit für eine echte Prüfung?

Das Kirchhoffsche Gesetze Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten

Beschreibung zum Video Kirchhoffsche Gesetze – Reihen- und Parallelschaltung

Wieso ist es leichter, eine Walnuss mit einem Nussknacker zu knacken, als mit der bloßen Hand? Die Antwort auf diese Frage erfährst du in diesem Video.

Hier wird dir das Hebelgesetz einfach erklärt. Du erfährst, was einen einseitigen und einen zweiseitigen Hebel unterscheidet und wo man Hebel im Alltag finden kann. Neben Text und Video findest du zum Hebelgesetz Aufgaben, mit denen du dein neues Wissen testen kannst.

Lerntext zum Thema Kirchhoffsche Gesetze – Reihen- und Parallelschaltung

Die kirchhoffschen Gesetze in der Physik

In der Elektrotechnik hat man es oft mit komplizierten Schaltungen zu tun, die schnell sehr unübersichtlich werden. Deswegen ist es nützlich, die kirchhoffschen Regeln zu kennen, mit denen man solche Schaltungen etwas leichter beschreiben kann. Sie dienen zur Analyse der Ströme und Spannungen an sogenannten Knotenpunkten (Punkte, an denen mehrere Leitungen zusammenfließen und sich wieder aufteilen) oder Maschen (beliebige geschlossene Stromschleifen) von Stromkreisen.

Wir schreiben zunächst die beiden Regeln auf und betrachten sie anschließend im Detail.

Kirchhoffsche Gesetze – Definition

1. kirchhoffsches Gesetz (Knotenregel)
An einem Knoten entspricht die Summe der zufließenden Ströme der Summe der abfließenden Ströme. Da die zufließenden Ströme ein positives und die abfließenden ein negatives Vorzeichen haben, ist die Summe über alle Ströme an einem Knotenpunkt null. Mathematisch schreibt man das folgendermaßen:

$\sum\limits_{k=1}^{K} I_k = I_1 + I_2 + I_3 + ... + I_K= 0$

Das $I_k$ steht dabei für die einzelnen Ströme, über die summiert wird. $K$ steht für die Gesamtanzahl einzelner Ströme.

2. kirchhoffsches Gesetz (Maschenregel)
In jeder Masche ist die Summe der Quellenspannungen gleich der Summe der abfallenden Spannungen $U_n$. In den meisten Stromkreisen, die im Physikunterricht betrachtet werden, gibt es nur eine Quellenspannung $U_0$. Im Folgenden betrachten wir daher speziell diese Fälle.

$\sum\limits_{n=1}^{N} U_n = U_1 + U_2 + U_3 + ... + U_N= U_0$

Das $U_n$ steht dabei für die einzelnen Spannungen, über die summiert wird. $N$ steht für die Gesamtanzahl einzelner Spannungen.

Kirchhoffsche Gesetze – Beispiele

Parallelschaltung
Betrachten wir nun die kirchhoffschen Gesetze etwas genauer. Dazu zeichnen wir zunächst eine einfache Parallelschaltung von zwei ohmschen Widerständen $R_1$ und $R_2$, die an eine Gleichstromquelle angeschlossen sind.

Kirchhoffsche Gesetze, Knotenregel Beispiel

Die beiden markierten Punkte, in denen sich die Leitungen aufteilen beziehungsweise wieder verbinden, sind die Knoten dieses Stromkreises. Jeder geschlossene Umlauf wird als Masche bezeichnet.

Wir wollen nun die 1. kirchhoffsche Regel nutzen, um eine Aussage über den Strom $I$ zu treffen. Nach dieser Regel muss für den oberen Knoten gelten:

$\sum\nolimits_{k} I_k = 0$

Es gibt an dem betrachteten Knoten einen Zufluss, der direkt von der Stromquelle kommt und den wir mit $I_0$ bezeichnen. Die beiden Abflüsse bezeichnen wir mit $I_1$ und $I_2$. Insgesamt muss die Summe gerade null ergeben, also:

$0 = I_0 - I_1 -I_2$

Dabei haben Zuflüsse ein positives und Abflüsse ein negatives Vorzeichen. Das können wir umformen zu:

$I_0 = I_1 + I_2$

Für den zweiten Knoten gilt das gleiche Prinzip. Nur sind hier $I_1$ und $I_2$ Zuflüsse und $I_3$ der Abfluss. Setzen wir dies wie oben ein und formen um, erhalten wir:

$I_3 = I_1 + I_2 = I_0$

Der Gesamtstrom teilt sich also auf die parallelen Leitungen auf. Außerdem stellen wir fest, dass die Stromstärke nach der Aufspaltung in zwei parallele Kreise, also $I_3$, genauso groß ist wie die Stromstärke vor der Spaltung, also $I_1$. Für das 1. kirchhoffsche Gesetz nutzt man zur Herleitung die Ladungserhaltung. Die mathematische Herleitung ist relativ kompliziert, aber die anschauliche Idee ist leicht zu verstehen. Elektrischer Strom ist nichts anderes als transportierte Ladung. Die Zuflüsse führen dem Knoten also Ladungen zu, während die Abflüsse Ladungen abführen. Weil im Knoten selbst keine Ladung verloren gehen kann, aber auch keine neue erzeugt wird, müssen genauso viele Ladungen zu- wie abfließen.

Betrachten wir nun die Spannung. Dazu nutzen wir das 2. kirchhoffsche Gesetz, also die Maschenregel. In jeder Masche muss die Summe der abfallenden Spannungen gleich der Quellspannung sein.

Kirchhoffsche Gesetze, Maschenregel Beispiel

In diesem Fall haben wir zwei Maschen. In jeder Masche ist die Spannungsquelle die einzige Quellspannung und es fällt jeweils die Spannung an einem Widerstand ab. Wir haben also:

$\text{Masche 1: } U_0 = U_1$

$\text{Masche 2: } U_0 = U_2$

Daher können wir insgesamt schreiben:

$U_1 = U_2 = U_0$

Die Spannung ist in beiden Maschen gleich der Quellspannung $U_0$.

Reihenschaltung
Nun betrachten wir zwei Widerstände, die in Reihe geschaltet sind.

Kirchhoffsche Gesetze, Reihenschaltung Beispiel

In dieser einfachen Schaltung gibt es nur eine Masche und keinen Knoten. Der Strom wird also nirgendwo aufgeteilt und ist folglich überall im Stromkreis gleich, also:

$I_0 = I_1 = I_2$

Für die Spannung gilt nach der Maschenregel:

$\sum\nolimits_{n} U_n = U_0$

$U_0$ ist hier einfach die Spannung der Spannungsquelle, da sie die einzige Quelle in diesem Stromkreis ist. Auf der linken Seite steht die Summe über alle an den Verbrauchern abfallenden Spannungen, also $U_1$ und $U_2$. Damit erhalten wir:

$U_1 + U_2 = U_0$

In der Reihenschaltung teilt sich die Spannung also auf die Verbraucher auf.

Die kirchhoffschen Gesetze haben direkte Einflüsse auf den Widerstand in Stromkreisen und das Verhältnis der einzelnen Spannungen. Mehr Informationen dazu findest du unter Parallelschaltung und Reihenschaltung.

Teste dein Wissen zum Thema Kirchhoffsche Gesetze!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung
Bewertung

Ø 3.0 / 66 Bewertungen
Die Autor*innen
Avatar
sofatutor Team
Kirchhoffsche Gesetze – Reihen- und Parallelschaltung
lernst du in der Sekundarstufe 1. Klasse - 2. Klasse
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'883

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'389

Lernvideos

36'076

Übungen

32'624

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden