Licht als Teilchen
Licht als Photon im Teilchenbild am Beispiel des Photoeffekts und des Compton-Effekts.
Beliebteste Videos und Lerntexte
Jetzt mit Spass die Noten verbessern
und sofort Zugriff auf alle Inhalte erhalten!
30 Tage kostenlos testenInhaltsverzeichnis zum Thema
Licht als Welle
Ende des 19. Jahrhunderts war die Wissenschaft der Auffassung, dass Licht eine elektromagnetische Welle ist. Phänomene wie Beugung und Interferenz von Lichtstrahlen konnten korrekt im Rahmen des Wellenbildes beschrieben werden und es gab keine Veranlassung, dieses Bild infragezustellen. Der Wellencharakter des Lichts war vielfach bewiesen.
Anfang des 20. Jahrhunderts bröckelte diese Vorstellung zunächst durch Max Plancks Forschungen an der Schwarzkörperstrahlung, in dessen Rahmen er als Planck'sches Wirkungsquantum $h$ bezeichnete. Spätestens mit Albert Einsteins Interpretation des Photoeffekts musste die Wissenschaft einsehen, dass Licht mehr als nur eine Welle ist.
Der Photoeffekt
Als Photoeffekt bzw. äußerer lichtelektrischer Effekt wird das Phänomen bezeichnet, bei dem aus einer Metallplatte Elektronen austreten, wenn diese mit Licht bestrahlt wird. In einer Metallplatte befinden sich Elektronen, die schwach an die Atomrümpfe gebunden sind. Damit die Elektronen aus der Metallplatte austreten können, müssen sie zuvor ausreichend Energie aufnehmen, um sich von der Bindung zu lösen. Das Licht liefert diese Energie. Ist die Bindung überwunden, treten die Elektronen aus der Platte aus und sind als Strom messbar.
Nach dem Austritt haben die Elektronen eine bestimmte kinetische Energie, die der Differenz aus absorbierter Energie und Bindungsenergie entspricht (die kinetische Energie der ausgelösten Elektronen lässt sich mit der Gegenfeldmethode bestimmen). Dieser Effekt ist übrigens Grundlage einer jeden Solarzelle. Experimente zeigten, dass der Photoeffekt nicht im Wellenbild erklärt werden kann.
Widersprüche zum Wellenbild des Lichts
Im klassischen Wellenbild ist die Energie des Lichts abhängig von seiner Intensität. Folglich müsste sich die kinetische Energie der ausgelösten Elektronen erhöhen, wenn die Bestrahlungsintensität erhöht wird. Dies ist in Experimenten zum Photoeffekt aber nicht nachweisbar. Zwar erhöht sich die Anzahl der ausgelösten Elektronen, nicht aber ihre Energie.
Stattdessen hängt die kinetische Energie der Elektronen aber von der Farbe des Lichts ab und damit von seiner Frequenz $f$. Mit steigender Frequenz steigt auch die kinetische Energie. Der Zusammenhang zwischen Frequenz und kinetischer Energie der Elektronen wird durch eine lineare Funktion mit Steigung $h=6,626\cdot10^{-34}\,$Js beschrieben.
Unterhalb einer bestimmten Frequenz, der Grenzfrequenz, treten gar keine Elektronen aus dem Metall aus. Außerdem ist die Grenzfrequenz materialabhängig. Sobald die Grenzfrequenz erreicht ist, treten Elektronen instantan aus (ohne zeitliche Verzögerung). Dies ist ebenfalls ein Widerspruch zum Wellenbild, nach welchem es möglich wäre, dass die Elektronen zunächst Energie "sammeln" bis sie genügend haben, um auszutreten. Im Wellenbild kann es folglich keine Grenzfrequenz geben.
Einsteins Lichtquantenhypothese
Albert Einstein analysierte die Erkenntnisse zum Photoeffekt und postulierte, dass Licht in diesem Fall als Teilchen (Lichtquant) agiert.
Die Lichtquanten oder Photonen haben die Energie $E=hf$ und geben ihre Energie komplett an die Elektronen ab. Man sagt, das Licht ist gequantelt. Für die kinetische Energie der Elektronen nach dem Austritt gilt demnach die nach ihm benannte Einstein'sche Gleichung
$E_{kin}=hf-W_A.$
Dabei ist $W_A$ die Austrittsarbeit (Bindungsenergie). Für diese Arbeit erhielt Einstein seinen Nobelpreis und nicht für die bekanntere Formel
$E=mc^2$.
Der Welle-Teilchen-Dualismus
Du hast nun gelernt, dass Licht zwei verschiedene Charaktere hat. In Beugungs- und Interferenzexperimenten tritt Licht als Welle in Erscheinung. Bei Wechselwirkungen mit Materie wie beim Photoeffekt verhält sich Licht wie ein Teilchen. Dies bezeichnet man als den Welle-Teilchen-Dualismus.
Compton-Effekt
Photonen als Teilchen können formal auch eine Masse und ein Impuls zugeschrieben werden. So können sie auch mit Elektronen elastisch stoßen. Treffen ein Photon und ein freies Elektron aufeinander, so können sie ähnlich wie zwei Billardkugeln ihre Bewegungsenergie und Richtung ändern. Dieses Phänomen ist bekannt als der Compton-Effekt
Alle Videos und Lerntexte zum Thema
Videos und Lerntexte zum Thema
Licht als Teilchen (6 Videos, 2 Lerntexte)
Alle Arbeitsblätter zum Thema
Arbeitsblätter zum Thema
Licht als Teilchen (6 Arbeitsblätter)
-
Fotoeffekt
PDF anzeigen
-
Äußerer Fotoeffekt und Lichtquanten
PDF anzeigen
-
Photoeffekt – Auswertung der Messung mit der Gegenfeldmethode
PDF anzeigen
-
Photoeffekt – Bestimmung des Plankschen Wirkungsquantums mittels Gegenfeldmethode
PDF anzeigen
-
Comptoneffekt – was ist das?
PDF anzeigen
-
Compton-Effekt – mathematischer Hintergrund
PDF anzeigen
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt