Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Thermische Leistung und Wirkungsgrad

Erfahre, was thermische Leistung und Wirkungsgrad bedeuten und wie sie sich auf Energiewandlung auswirken. Wärmequellen, thermische Energie, Formeln und Beispielrechnungen – alles für ein klares Verständnis. Interessiert? Entdecke die Details im folgenden Text und vertiefe dein Wissen!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Thermische Leistung und Wirkungsgrad

Was ist thermische Leistung?

1/5
Bereit für eine echte Prüfung?

Das Thermische Leistung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.1 / 11 Bewertungen
Die Autor*innen
Avatar
Physik Siggi
Thermische Leistung und Wirkungsgrad
lernst du in der Sekundarstufe 1. Klasse - 2. Klasse

Grundlagen zum Thema Thermische Leistung und Wirkungsgrad

Thermische Leistung und Wirkungsgrad einfach erklärt

Die Begriffe thermische Leistung und Wirkungsgrad wurden vielleicht schon einmal im Unterricht erwähnt. Aber was versteht man in der Physik unter der thermischen Leistung und dem Wirkungsgrad? Im folgenden Text werden beide Begriffe genauer erklärt.

Grundlagen zu Wärme und thermischer Energie – Wiederholung

Zunächst müssen wir den Begriff der Wärmequelle genauer erklären. Alles, was Wärme abgibt, ist eine Wärmequelle. Am bekanntesten ist die Sonne. Sie erwärmt unter anderem die Erde.

Als Wärme wird die Energie bezeichnet, die ein warmer Körper an einen kalten Körper überträgt. Wärme ist eine Energieform und besitzt das Formelzeichen QQ und die Einheit Joule, kurz J\pu{J}. Sie wird auch Wärmeenergie genannt.

Eine Wärmequelle gibt Energie in Form von Wärme an die Umgebung ab. Eine Herdplatte gibt zum Beispiel Wärme an den Topf ab. Damit eine Wärmequelle Wärme abgeben kann, muss in vielen Fällen vorher Energie zugeführt worden sein. Bei der Herdplatte ist die zugeführte Energie elektrische Energie. Bei einem Gasherd ist die zugeführte Energie chemische Energie, die beim Verbrennen des Gases umgewandelt wird.

Schauen wir uns als Nächstes den Begriff der thermischen Energie an. Sie wird auch als innere Energie bezeichnet. Thermische Energie besitzt das Formelzeichen UU. Die thermische Energie ist die Bewegungsenergie und Bindungsenergie der kleinsten Teilchen eines Stoffs. In einem festen Stoff bedeutet bewegen, dass sie um ihre Ruhelage schwingen. Dabei schwingen die Teilchen bei höherer Temperatur schneller als bei niedriger Temperatur. Je schneller die Teilchen schwingen, desto größer ist die thermische Energie des Stoffs. Diese innere Energie kann in Form von Wärme von einem Stoff an die Umgebung abgegeben werden.

Einer Wärmequelle wird elektrische, chemische, thermische oder mechanische Energie zugeführt. Diese zugeführte Energie erhöht die innere Energie der Wärmequelle. Diese gibt die Energie in Form von Wärme wieder an die Umgebung ab. Es hat eine Energieumwandlung stattgefunden.


Was ist thermische Leistung?

Die Definition der thermischen Leistung lautet:

Die thermische Leistung gibt an, wie viel Wärme pro Sekunde von der Wärmequelle abgegeben wird.

Die thermische Leistung besitzt das Formelzeichen PP. Das steht für das englische Wort power, das Leistung bedeutet. Die Formel für die thermische Leistung lautet:

P=QtP = \frac{Q}{t}

Die thermische Leistung berechnet sich also aus der Wärme QQ pro Zeit tt. Daraus ergibt sich die Einheit für die thermische Leistung als Joule pro Sekunde, dies wird auch Watt genannt und mit W\pu{W} abgekürzt.

Schauen wir uns ein Beispiel für die thermische Leistung an. Die Herdplatte von Sebastian braucht 5min5\,\pu{min}, um das Wasser im Kochtopf von 10C10\,^\circ\pu{C} auf 100C100\,^\circ\pu{C} zu erhitzen. Die Herdplatte von Michael braucht für den gleichen Vorgang 20min20\,\pu{min}. Die Herdplatte von Sebastian leistet also mehr als die von Michael, da sie die gleiche Wärme innerhalb von kürzerer Zeit abgegeben hat. Nach 5min5\,\pu{min} hat die Herdplatte von Sebastian das Wasser bereits auf 100C100\,^\circ\pu{C} erhitzt, während die von Michael dafür noch weitere 15min15\,\pu{min} benötigt. Die Platte von Sebastian gibt also pro Sekunde viel mehr Wärme ab als die von Michael. Die thermische Leistung von Sebastians Platte ist also größer.


Was ist der Wirkungsgrad?

Der Wirkungsgrad wird mit dem griechischen Buchstaben η\eta abgekürzt. Er wird in Prozent angegeben. Die Definition für den Wirkungsgrad lautet:

Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie in die gewünschte Energieform umgewandelt wird.

Die Formel für den Wirkungsgrad lautet:

η=EgEz\eta = \frac{E_g}{E_z}

Der Wirkungsgrad berechnet sich aus der gewünschten Energie EgE_g geteilt durch die zugegebene Energie EzE_z. Bei der Wärmequelle ist die gewünschte Energie die Wärme. Diese wird bei der Berechnung des Wirkungsgrads durch die zugeführte Energie geteilt.

Es gibt immer einen sogenannten Energieverlust, weshalb der Wirkungsgrad nie bei 100%100\,\% liegt. Energieverlust bedeutet nicht, dass die Energie verloren geht, da Energie nicht verloren gehen kann. Sie wird lediglich in eine andere Energieform als die gewünschte Energieform umgewandelt. Bei einer Glühlampe ist die gewünschte Energieform Lichtenergie, es entsteht jedoch auch Wärmeenergie. Wie in der Tabelle erkennbar wird nur ein geringer Teil in Lichtenergie umgewandelt, der Rest wird in Wärmeenergie umgewandelt. Diese ist nicht gewünscht und kann nicht verwendet werden, weshalb sie als Energieverlust bezeichnet wird.


Energiewandler zugeführte Energie gewünschte Energie Wirkungsgrad η\eta
elektrische Herdplatte elektrische Energie Wärme 505060%60\,\%
Gasherd chemische Energie Wärme 303040%40\,\%
Lagerfeuer chemische Energie Wärme <15%<15\,\%
Gasheizung chemische Energie Wärme 808090%90\,\%
Glühlampe elektrische Energie Licht 5%5\,\%

In der Tabelle sind einige Beispiele für verschiedene Wirkungsgrade aufgelistet. Die elektrische Herdplatte wandelt elektrische Energie in Wärmeenergie um und hat dabei einen Wirkungsgrad von 505060%60\,\%. Ein Gasherd wandelt hingegen chemische Energie in Wärmeenergie um und hat dabei einen Wirkungsgrad von 303040%40\,\%. Einen sehr guten Wirkungsgrad hat die Gasheizung. Sie wandelt fast die komplette chemische Energie in die gewünschte Wärmeenergie um.

Teste dein Wissen zum Thema Thermische Leistung!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Thermische Leistung und Wirkungsgrad – Zusammenfassung

Die folgenden Stichpunkte fassen das Wichtigste aus dem Video und dem Text noch einmal zusammen.

  • Eine Wärmequelle wandelt zugeführte Energie in Wärme um und gibt diese an ihre Umgebung ab.
  • Die thermische Leistung gibt an, wie viel Wärme pro Sekunde von der Wärmequelle abgegeben wird.
  • Der Wirkungsgrad gibt an, wie viel von der zugeführten Energie in die gewünschte Energieform umgewandelt wird.

Zusätzlich zum Video gibt es noch Aufgaben und Übungen zum Thema thermische Leistung und Wirkungsgrad hier auf der Seite.

Transkript Thermische Leistung und Wirkungsgrad

Hallo, ich bin euer Physik-Siggi. Heute werde ich euch erklären, was man unter thermischer Leistung versteht, und ihr werdet lernen, was der Wirkungsgrad ist und ihn bei einigen Beispielen kennenlernen. Dafür werden wir zunächst die Wärmequelle besprechen. Was ist die Wärmequelle? Alles, was irgendwie Wärme abgibt, ist eine Wärmequelle. Am bekanntesten ist die Sonne. Sie erwärmt die ganze Zeit unsere Erde. Was ist eigentlich die Wärme? Sie ist genau die Energie, die ein warmer Körper auf einen kalten Körper überträgt. Wärme ist also eine Energieform. Sie wird auch Wärmeenergie genannt. Eine Wärmequelle gibt also Energie in Form von Wärme an die Umgebung ab. Wie zum Beispiel diese Herdplatte. Damit die Quelle jedoch Wärme abgeben kann, muss sie vorher eine andere Energie aufnehmen. Bei der Herdplatte ist es elektrische Energie, beim Gasherd ist es chemische Energie, die bei der Verbrennung des Gases umgesetzt wird. All diese Energiearten werden in Wärme umgewandelt. Dies macht die Wärmequelle. Bevor wir zur thermischen Leistung kommen, werde ich euch erst erklären, was thermische Energie ist. Sie wird auch als innere Energie bezeichnet und sie ist die Bewegungsenergie der kleinsten Teilchen eines Stoffes. Zum Beispiel bewegen sich Wasserteilchen im 90° warmen Wasser sehr viel schneller als die im 20° warmen Wasser. Bewegen heißt, dass sie um ihre Ruhelage schwingen. Sie sind an einen festen Ort gebunden, können jedoch etwas um diesen festen Ort herumschwingen. Wichtig ist: Je heißer der Stoff ist, desto schneller bewegen sich die Teilchen und desto größer ist die thermische Energie des Stoffes. Diese innere Energie kann ein Stoff, zum Beispiel die Herdplatte oder das brennende Holz, nun in Form von Wärme an die Umgebung abgeben. Also: Einer Wärmequelle wird elektrische, chemische, thermische oder auch mechanische Energie zugeführt. Die zugeführte Energie erhöht die innere Energie der Wärmequelle. Diese gibt ihre Energie wieder in Form von Wärme an die Umgebung ab. Wir haben eine wunderbare Energieumwandlung kennengelernt.  Die thermische Leistung gibt nun an, wie viel Wärme in jeder Sekunde von der Wärmequelle abgegeben wird. Die Leistung  ist also die Wärme  pro Zeit ( = /). Wärme ist eine Energie. Die Einheit der Wärme ist also genau wie bei der Energie Joule J. Damit ist die Einheit der thermischen Leistung Joule pro Sekunde (J/s). Dies wird auch Watt genannt und mit W abgekürzt. Ihr kennt dies bereits aus der mechanischen Arbeit. Michael und Sebastian rollen je einen großen Felsblock von A nach B. Beide machen die gleiche Arbeit, zum Beispiel 10J, weil ja beide am Ende den Felsblock an die Stelle B gebracht haben. Jedoch hat Michael dafür 5 Stunden gebracht, Sebastian jedoch nur 1 Stunde. Somit hat Sebastian mehr geleistet, weil er ja für die gleiche Arbeit viel weniger Zeit gebraucht hat. Nach einer Stunde hat Michael den Stein nämlich erst 1/5 des Weges geschoben - er leistet viel weniger als Sebastian, der zu der Zeit schon bei B angelangt ist. Genauso ist es bei der Wärmequelle: Die Herdplatte von Sebastian braucht 5 Minuten um das Wasser von 10 auf 100°C zu erhitzen. Die von Michael braucht 20 Minuten. Also leistet die Herdplatte von Sebastian mehr, weil sie die gleiche Wärme in kürzerer Zeit abgegeben hat. Oder anders: Nach 5 Minuten hat die Platte von Sebastian das Wasser bereits auf 100°C erhitzt, die Platte von Michael jedoch erst auf 28°C. Die Platte von Sebastian gibt also pro Sekunde viel mehr Wärme ab, als die von Michael. Ihre thermische Leistung ist also größer. Zuletzt noch der Wirkungsgrad . Er gibt an, welcher Anteil der zugeführten Energie in die gewünschte Energie umgewandelt wurde. Bei der Wärmequelle zum Beispiel ist er die abgegebene thermische Energie, also die Wärme geteilt durch die zugeführte Energie. Der Wirkungsgrad kann theoretisch also bei 100% liegen, es gibt jedoch immer einen Energieverlust. Bei der Herdplatte ist die zugeführte Energie elektrisch und der Wirkungsgrad liegt bei 50-60%. Beim Gasherd ist die zugeführte Energie chemisch und der Wirkungsgrad liegt bei 30-40%. Es gehen also 60-70% verloren. Beim Lagerfeuer ist die zugeführte Energie auch chemisch - nämlich das Holz - und der Wirkungsgrad wird nicht größer als 15%. Die Gasheizung hat dagegen einen Wirkungsgrad von 80-90%. Sie wandelt demnach fast alle zugeführte Energie in Wärme um. Bei der Glühbirne zum Beispiel ist die zugeführte Energie elektrische Energie und die gewünschte Energie ist Lichtenergie. Wenn ich 100J elektrische Energie in die Glühbirne einführe, so werden davon nur 5J in Lichtenergie umgewandelt. Der Wirkungsgrad liegt also, nach einer kleinen Rechnung, bei 5%. Die restlichen 95% der elektrischen Energie gehen hier als Wärme verloren. Ihr wisst, dass die Glühbirne sehr heiß werden kann. Also: Thermische Leistung gibt an, wie viel Wärme pro Sekunde von der Wärmequelle abgegeben wird und der Wirkungsgrad gibt an, wie viel von der zugeführten Energie in gewünschte Energie umgewandelt wird. Vielen Dank für die Aufmerksamkeit.

8 Kommentare
  1. ʕ•ᴥ•ʔ

    Von Hey ʕ•ᴥ•ʔ, vor fast 8 Jahren
  2. der Physik siggi (°o°)

    Von Hey ʕ•ᴥ•ʔ, vor fast 8 Jahren
  3. : ( net gut

    Von Manja M., vor fast 11 Jahren
  4. (y) Top

    Von Wummy35, vor fast 12 Jahren
  5. klasse !!!

    Von Christian O., vor mehr als 12 Jahren
Mehr Kommentare

Thermische Leistung und Wirkungsgrad Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Thermische Leistung und Wirkungsgrad kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

9'143

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'610

Lernvideos

35'667

Übungen

32'407

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden