Fotosynthese – Energiegewinnung der lichtabhängigen Reaktion
Erfahre, wie Lichtenergie die Fotosynthese antreibt, Wasser in Energieträger umwandelt und Redoxreaktionen auslöst. Entdecke die Rolle von ATP-Synthase und dem Cytochrom-b6f-Komplex, erfahre mehr über Fotolyse und Elektronentransportkette. Interessiert? Das und mehr im folgenden Text!
- Lichtabhängige Reaktion – Biologie
- Lichtabhängige Reaktion der Fotosynthese – Definition
- Reduktion und Oxidation – Wiederholung
- Lichtabhängige Reaktion – die Gleichung
- Lichtabhängige Reaktion – der Ablauf
- Die Fotolyse
- Linearer Elektronentransport
- Nichtzyklische Fotophosphorylierung
- Zyklische Fotophosphorylierung
- Was wird für die lichtabhängige Reaktion benötigt?
- Die lichtabhängige Reaktion der Fotosynthese – Zusammenfassung
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Fotosynthese – Energiegewinnung der lichtabhängigen Reaktion
Lichtabhängige Reaktion – Biologie
Pflanzen produzieren Zucker bei der Fotosynthese. Dies ist bereits aus der Reaktion der Fotosynthese bekannt. Kohlenstoffdioxid und Wasser werden mit der Hilfe von Lichtenergie in Sauerstoff und Glucose umgewandelt. Für diese Umwandlung wird Energie benötigt, die die Pflanze aus dem Sonnenlicht gewinnt. Aber wie genau läuft diese Energiegewinnung nun ab? Was entsteht bei der lichtabhängigen Reaktion? Was bedeutet Reduktion und Oxidation? Und welche Rolle spielt dabei zum Beispiel die Fotolyse? Dies alles erfährst du hier.
Lichtabhängige Reaktion der Fotosynthese – Definition
Was ist die lichtabhängige Reaktion? Einfach erklärt ist die lichtabhängige Reaktion die Primärreaktion der Fotosynthese und der Teilprozess, der durch das Sonnenlicht aktiviert wird. Die Lichtenergie der Sonnenstrahlen trifft auf das Fotosystem I (P700) und Fotosystem II (P680) auf. Beide Fotosysteme reagieren dabei auf unterschiedliche Wellenlängen, P700 absorbiert Licht bei einer Wellenlänge von 700 nm maximal, P680 absorbiert Licht besonders bei einer Wellenlänge von 680 nm. Bei Aktivierung der Systeme werden Elektronen abgegeben. Durch die Elektronenabgabe laufen verschiedene Reaktionen, mitunter die Spaltung des Wassers, ab, die in der Bildung von Energie in Form von $\ce{NADPH + H+}$ und $\ce{ATP}$ enden. Diese Energie nutzt die Pflanze für weitere Zellstoffwechselprozesse und die Dunkelreaktion, bei der die Glucose gebildet wird.
Reduktion und Oxidation – Wiederholung
Bei der lichtabhängigen Reaktion spielen Reduktion und Oxidation eine große Rolle.
Reduktion bedeutet, es werden Elektronen aufgenommen. Bei der Oxidation werden dagegen Elektronen abgegeben, dabei wird Energie frei.
Um diese beiden Reaktionstypen zu wiederholen, wird hier die Gesamtreaktion der Fotosynthese wiederholt. Bei der Fotosynthese reagieren die Moleküle Kohlenstoffdioxid $(\ce{CO2})$ und Wasser $(\ce{H2O})$ zu dem Zucker Glucose $(\ce{C6H12O6})$ und Sauerstoff $(\ce{O2})$.
Um zu erkennen, was hier reduziert und was oxidiert wird, muss man zunächst die Oxidationszahlen bestimmen. Diese zeigen dir, wie viel Elementarladung ein Atom innerhalb einer Verbindung aufgenommen oder abgegeben hat. Die Oxidationszahlen sind hier als kleine römische Ziffern notiert.
$\ce{6\overset{IV}{C}\overset{-II}{O2} + 6\overset{I}{H2}\overset{-II}{O} -> \overset{0}{C6}\overset{I}{H12}\overset{-II}{O6} + 6\overset{0}{O2}}$
Du siehst, dass Kohlenstoff $(\ce{C})$ im Kohlenstoffdioxid eine Oxidationszahl von $\ce{IV}$ hat. Dagegen haben beide Sauerstoffatome $(\ce{O})$ jeweils eine Oxidationszahl von $\ce{-II}$. Während der Fotosynthese nimmt der Kohlenstoff Elektronen $(\ce{C})$ auf, seine Oxidationszahl beträgt anschließend null. Der Kohlenstoff wurde somit reduziert. Beim Sauerstoff ändert sich durch Elektronenaufnahme die Oxidationszahl ebenfalls auf null. Er wurde oxidiert.
Der Wasserstoff aus der Glucose stammt aus dem Wasser links in der Reaktionsgleichung. Dieses wird im Rahmen der Fotolyse gespalten. Dieser Vorgang wird später im Text noch genauer erklärt.
Um das Thema von Oxidation und Reduktion zu vertiefen, kannst du dir das Video Redoxreaktion anschauen.
Lichtabhängige Reaktion – die Gleichung
Die Formel der lichtabhängigen Reaktion lautet:
${\footnotesize\ce{12 H2O + 12 NADP^+ + 18 ADP + 18 P_i + Lichtenergie -> 6 O2 + 12 NADPH + H+ + 18 ATP}}$
Bei der lichtabhängigen Reaktion wird also mithilfe von Lichtenergie Wasser gespalten und die energiereichen Verbindungen $\ce{NADPH + H+}$ und $\ce{ATP}$ werden gebildet. Wie genau diese Vorgänge ablaufen, wird im Folgenden erklärt.
Lichtabhängige Reaktion – der Ablauf
Die lichtabhängige Reaktion ist in mehrere Teilprozesse unterteilt. Diese werden nun Schritt für Schritt erklärt.
Die Fotolyse
Wichtig für die Fotosynthese und den Ablauf der nachfolgenden Reaktionen ist die Fotolyse (Foto = Lichtenergie und lyse = spalten). Das ist eine lichtaktive Spaltung des Wassers $(\ce{H2O})$ in Wasserstoff $(\ce{H2})$ und Sauerstoff $(\ce{O2})$.
Dabei werden zwei Wassermoleküle $(\ce{H2O})$ in vier positive Wasserstoffionen $(\ce{H+})$ und einen elementaren Sauerstoff $(\ce{O2})$ gespalten. Es werden vier Elektronen frei. Die Reaktionsgleichung kannst du hier sehen:
$\ce{2H2O ->[Licht] 4H+ + O2 + 4 e-}$
Linearer Elektronentransport
Die Fotolyse läuft auf der Innenseite der Thylakoidmembran ab. Die dazu notwendige Energie stammt aus dem P680 (Fotosystem II). Wenn dieses durch Licht aktiviert wird, gibt es ein Elektron an einen Akzeptor ab, der dadurch reduziert wird. Die entstandene Elektronenlücke am P680 wird mit den freien Elektronen aus der Fotolyse aufgefüllt.
Neben dem Akzeptor befindet sich eine Reihe weiterer Akzeptoren, sie bilden eine Weiterleitungskette bis zum P700 (Fotosystem I). Diese nennt man auch Elektronentransportkette. Durch die Aufnahme und Abgabe der Elektronen, Reduktion und Oxidation, bildet jeder Akzeptor ein eigenes Redoxsystem, wobei jeder nachfolgende Akzeptor jeweils stärker die Elektronen anzieht als der vorhergehende. So wird ein Elektronenrückfluss vermieden und eine Einbahnstraße geschaffen.
Damit das P700 das Elektron nun aufnehmen kann, muss es zunächst ein Elektron abgeben. Das tut es, wenn es durch Licht angeregt wird. Das abgegebene Elektron wird an das Ferredoxin weitergeben. Von dort gelangt es mit Wasserstoffprotonen zur NADP-Reduktase. Dort wird Wasserstoff $(\ce{H2})$ an $\ce{NADP+}$ zu $\ce{NADPH + H+}$ gebunden. Hierfür werden zwei Elektronen benötigt.
Den gesamten Vorgang nennt man linearer oder nichtzyklischer Elektronentransport. In dem Bild kannst du dir die Elektronentransportkette noch einmal genauer anschauen.
Nichtzyklische Fotophosphorylierung
Auf der Thylakoidmembraninnenseite sammeln sich Wasserstoffprotonen durch die Fotolyse. Auf der Membranaußenseite wird durch die Bildung von $\ce{NADPH + H+}$ ständig Wasserstoff verbraucht. Innen sind also mehr Wasserstoffatome als außen. Dieses Ungleichgewicht führt zu einem Protonengradienten (Konzentrationsgefälle). Hier kommt die ATP-Synthase zum Einsatz. Die Wasserstoffprotonen wandern für den Konzentrationsausgleich durch ein Tunnelprotein von innen nach außen. An das Tunnelprotein ist die ATP-Synthase gebunden. Dieses nutzt die Energie, die durch den Protonenfluss entsteht: $\ce{ADP + P}$ wird dabei zu $\ce{ATP}$. Dies wird als nichtzyklische Fotophosphorylierung bezeichnet.
Zyklische Fotophosphorylierung
Auch wenn die Elektronentransportkette nicht aktiv ist, kann ATP gebildet werden. Statt des nichtzyklischen Elektronentransports findet hier der zyklische Elektronentransport statt.
Hierfür tritt der Cytochrom-b6f-Komplex in Kraft. Dieser Cytochrom-b6f-Komplex ist ein Multiproteinkomplex bestehend aus verschiedenen Proteinen. Er ist direkt in der Thylakoidmembran in der Akzeptorenkette eingelagert, zwischen dem Fotosystem II und Fotosystem I. Das fotoaktive P700 gibt weiterhin Elektronen an das Ferredoxin ab, diese werden nun an das Redoxsystem Cytochrom-b6f-Komplex geleitet. Von dort gelangen sie wieder auf das P700. Das aktivierte Cytochrom-b6f transportiert dabei die Wasserstoffprotonen von außen nach innen und baut den Protonengradienten wieder auf. Diese wandern anschließend durch den Proteintunnel nach außen und die ATP-Produktion läuft weiter. Der entstehende Kreislauf wird zyklische Fotophosphorylierung genannt.
Was wird für die lichtabhängige Reaktion benötigt?
Die wichtigsten Bestandteile und Teilprozesse der lichtabhängigen Reaktion und ihre Funktionen sind hier noch einmal zusammengefasst.
Bestandteile/Teilprozesse der lichtabhängigen Reaktion | Funktion |
---|---|
Fotosystem I | Es absorbiert Licht und spendet Energie für die Fotolyse. |
Fotosystem II | Es absorbiert Licht und liefert Energie für die $\ce{NADPH + H+}$-Synthese |
Sonnenlicht | Energiequelle |
Redoxsysteme | Sie bilden die Elektronentransportkette. |
Wasser | Ausgangsstoff für die Fotolyse |
ATP-Synthase | Produktion von ATP als Energieträger |
Cytochrom-b6f-Komplex | Er pumpt Protonen von der Außenseite zur Innenseite der Thylakoidmembran für den zyklischen Elektronentransport. |
Die lichtabhängige Reaktion der Fotosynthese – Zusammenfassung
Du hast nun gelernt, dass in den Chloroplasten Wasser durch die Verwendung von Lichtenergie gespalten wird. Die frei werdenden Wasserstoffprotonen werden für die Bildung von $\ce{NADPH + H+}$ und $\ce{ATP}$ benötigt. Dabei spielen verschiedene Redoxsysteme eine wichtige Rolle, um den antreibenden Elektronenfluss zu gewährleisten. $\ce {ATP}$ kann jedoch auch über den zyklischen Elektronentransport produziert werden.
Des Weiteren ist die Energiegewinnung in Form von $\ce{NADPH + H+}$ und $\ce {ATP}$ eine wichtige Voraussetzung, um die nachfolgende Dunkelreaktion der Pflanze zu gewährleisten, in der die Glucose gebildet wird.
Interessierst du dich für weitere Abläufe in der Fotosynthese? Dann sind die Videos Fotosynthese, Erstellen und Ausgleichen der Reaktionsgleichung und Fotosynthese – die lichtunabhängige Reaktion passend.
Nun hast du dir hier viel Wissen zur lichtabhängigen Reaktion angeeignet, mit dem du unsere Übungen und das Arbeitsblatt lösen kannst. Viel Spaß dabei!
Transkript Fotosynthese – Energiegewinnung der lichtabhängigen Reaktion
Hallo, hier ist wieder Sabine und in diesem Video wollen wir uns die Lichtreaktion der Photosynthese näher betrachten. Im vorigen Film haben wir schon mal die Photosynthese-Gleichung gesehen. Aus 6 Kohlenstoffdioxid und 6 Mal Wasser wird Glukose und 6 Mal Sauerstoff. Du hast gelernt, wie die Fotosysteme der Pflanze Licht absorbieren und die Energie dann für fotochemische Reaktionen zur Verfügung steht. Was genau im nächsten Schritt passiert, erkläre ich dir jetzt. Im Laufe des Films werde ich ziemlich oft die Wörter "Reduktion" und "Oxidation" brauchen. Als Reduktion bezeichnet man in der Chemie eine Reaktion, bei der ein Elektron von einem Stoff aufgenommen wird. Oxidation ist die Abgabe von Elektronen. Jetzt schreibe ich mal schnell über die Photosynthese-Gleichung die Oxidationszahlen in rot. Im Kohlenstoffdioxid hat der Kohlenstoff die Oxidationszahl 4, in der Glucose bloß noch die 0. Das heißt, der Kohlenstoff wird reduziert. Der Sauerstoff im Wasser hat die Oxidationszahl von -2, am Ende der Reaktion die Oxidationszahl 0. Das heißt, der Sauerstoff wird oxidiert. Der Wasserstoff in der Glucose stammt aus dem Wasser, der zu diesem Zweck gespalten werden muss. Diesen Prozess nennt man Fotolyse. "Lyse" deutet darauf hin, dass etwas gespalten wird, und "Foto", dass die Energie für den Spaltungsprozess aus dem Licht stammt. Auf der Innenseite der Thylakoidmembran steckt ein Wasser spaltendes Enzym, das aus 2 Wassermolekülen, 4 Protonen bzw. Wasserstoffionen abspaltet, 1 Sauerstoffmolekül und 4 Elektronen. Die Lichtenergie für die Fotolyse stammt aus dem P680, dem Fotosystem 2. Das angeringte Reaktionszentrum leitet ein Elektron zu einem Akzeptor weiter. Die entstehende Elektronenlücke im P680 wird dadurch geschlossen, dass über das wasserspaltende Enzym dem Wasser Elektronen gemopst werden. Das abgegebene Elektron am Akzeptor wandert jetzt weiter die Thylakoidmembran entlang über eine sogenannte Elektronentransportkette. Und das funktioniert folgendermaßen: Der Akzeptor wird durch das Elektron reduziert. Ich versuche das mal dadurch darzustellen, dass der Akzeptor von Gelb auf Grün wechselt. Durch Elektronenabgabe wird er wieder oxidiert; das heißt, er wird von Grün wieder zu Gelb. Und das nächste Teil der Elektronentransportkette wird dann reduziert, also das wird dann grün. Da der Akzeptor ständig zwischen diesen beiden Zuständen wechselt, ist er ein Redoxsystem. Viele solcher Redoxsysteme sind jetzt hintereinander geschaltet und bringen ein Elektron von A nach B und werden dann Elektronentransportkette genannt. Hier habe ich noch einmal versucht, das zu zeigen. Der Akzeptor wird reduziert und wird grün, gibt sein Elektron an das große Redoxsystem ab, also das rote, wird dadurch oxidiert und das große rote Redoxsystem wird blau, also damit reduziert. Dieser Vorgang wiederholt sich zig Mal innerhalb dieser Elektronentransportkette. Innerhalb der Elektronentransportkette wird die Neigung, ein Elektron aufzunehmen, immer stärker. Also dieses Redoxsystem saugt stärker ein Elektron zu sich an als dieses Redoxsystem. Und das nächste Redoxsystem zieht stärker einen Elektronen an als das vorherige usw. Dadurch wird verhindert, dass das Elektron auf die Idee kommt, zurückzuwandern. Als Letztes in der Kette sitzt das Fotosystem 1, das P700. Damit dieses Fotosystem das Elektron aufnehmen kann, muss es durch Licht angeregt werden und ein Elektron abgeben. Dieses neue Elektron landet dann beim Redoxsystem Ferredoxin. Von dort kommt es zum Enzym NADP-Reduktase. Dieses Enzym tut Folgendes: Es schnappt sich die bei der Fotolyse entstandenen Wasserstoffionen und die Elektronen und fügt sie zu Wasserstoffmolekülen wieder zusammen. Der Wasserstoff wird an das Coenzym NADP+ gekoppelt und es entsteht NADPH + H+. Dies ist wichtig, da elementarer Wasserstoff ein Zellgift ist. Das heißt, wir haben jetzt schon mal den Wasserstoff zusammen, den wir zum Zusammenbauen der Glucose brauchen. Damit ist der Film aber noch nicht zu Ende, denn die Lichtreaktion kann noch viel mehr. Wir sind ja an der Thylakoidmembran. Oben im Bild haben wir den Thylakoidaußenraum, dann kommt die Membran und dann der Thylakoidinnenraum. Durch die Fotolyse sammeln sich auf der Innenseite der Membran Wasserstoffionen, also positiv geladene Teilchen. Auf der Außenseite werden Wasserstoffionen an NADP+ gebunden. Hier gibt es weniger positive Ladung. Dieses Konzentrationsgefälle, auch Protonengradient genannt, nutzt die pflanzliche Zelle, um ATP zu gewinnen. Über das Molekül ATP wird Energie gespeichert und kann dann an verschiedensten Stellen des Stoffwechsels genutzt werden. Aber wie funktioniert das denn jetzt genau? Wasserstoffionen folgen dem Konzentrationsgefälle und wandern durch Tunnelproteine von innen nach außen. An dieses Protein ist das Enzym ATP-Synthase gebunden. Die freiwerdende Energie nutzt dieses Enzym, um aus ADP + P ATP zu bilden. Dieser Vorgang heißt "nichtzyklische Fotophosporylierung". Wenn genügend NADPH + H+ entstanden ist, kommt die Elektronentransportkette zum Erliegen. ATP kann trotzdem noch gebildet werden. Das angeregte Fotosystem 1 gibt sein Elektron an das Ferredoxin weiter, das Redoxsystem. Von dort geht das Elektron an ein spezielles Redoxsystem, dem Cytochrom-bf-Komplex, dieses ganz große rote, das durch die ganze Thylakoidmembran geht. Von dort kehren die Elektronen zurück zum Fotosystem 1 und es geht wieder von vorn los. Der Cytochrom-bf-Komplex pumpt Protonen von außen nach innen. Dadurch entsteht wie eben der Protonengradient. Wenn die Wasserstoffionen jetzt durch die Tunnelproteine mit der ATP-Synthase wandern, entsteht wieder ATP. Die Wasserstoffionen werden durch den Cytochrom-bf-Komplex ins Thylakoidinnere zurückgepumpt und können wieder durch das Tunnelprotein zur ATP-Bildung beitragen. Die ATP-Synthese ist ein Kreislauf und daher nennt man diese Fotophosphorylierung zyklische Fotophosphorylierung. Fassen wir zusammen: Im Chloroplasten wird Wasser zu Sauerstoff, Elektronen und Protonen durch Lichtenergie gespalten. Über eine Elektronentransportkette landen die Elektronen bei der NADP Reduktase, wo sie wieder mit deren Protonen zusammengefügt werden und Wasserstoff bilden. Der elementare Wasserstoff wird an das Coenzym NADP+ gebunden, da er sonst Zellgift wäre. Es entsteht NADPH + H+. Der Protonengradient zwischen Thylakoidinnenraum und -außenraum wird von Chloroplasten genutzt, um ATP zu bilden. Diesen Vorgang nennt man Fotophosphorylierung. NADPH + H+ und ATP sind Ausgangsstoffe für die Glucosebildung in der Dunkelreaktion. Das war's erst mal. Wir sehen uns in der Dunkelreaktion wieder. Bis dann, Sabine.
Fotosynthese – Energiegewinnung der lichtabhängigen Reaktion Übung
-
Bestimme, was passiert, wenn Ferredoxin fehlt.
TippsFerredoxin stellt das Redoxsystem dar.
Ferredoxin ist ein Elektronenakzeptor.
LösungFerredoxin ist ein eisen- und schwefelhaltiges Protein. Man findet es in allen Grünpflanzen und einigen Bakterien. Als Elektronenüberträger spielt es eine wichtige Rolle in der Fotosynthese.
Wenn das Ferredoxin in den Chloroplasten fehlt, ist die Elektronentransportkette unterbrochen. Das Ferredoxin ist Teil des Redoxsystems. Auch die Fähigkeit zur Photolyse des Wassers geht den Chloroplasten verloren, ebenso wie die zyklische und nicht zyklische Phosphorylierung.
-
Beschreibe, was man unter Fotophosphorylierung versteht.
TippsÜber das Molekül ATP wird Energie gespeichert und für den Stoffwechsel genutzt.
LösungDie Fotophosphorylierung beschreibt die Bildung von Adenosintriphosphat (ATP) durch die Anlagerung einer Phosphatgruppe an Adenosindiphosphat (ADP). Dies geschieht unter dem Einfluss von Lichtenergie.
Im Laufe der Lichtreaktion entsteht zwischen Thylakoidinnenraum und Stroma eine unterschiedliche Protonenkonzentration, durch den angestrebten Konzentrationsausgleich wird enzymatisch ATP gebildet. Je nach Transportweg der Elektronen bei der Lichtreaktion unterscheidet man zwischen der zyklischen und nichtzyklischen Fotophosphorylierung.
Bei der nichtzyklischen Fotophosphorylierung gelangen die Elektronen, die vom Fotosystem 2 kommen, über die Elektronentransportkette zum Fotosystem 1.
Bei der zyklischen Fotophosphorylierung ist nur das Fotosystem 1 beteiligt. Die Elektronen verbleiben während der gesamten Lichtreaktion im Ursprungsort.
-
Erkläre, wofür eine Pflanze Energie benötigt.
TippsIn den Pflanzenzellen werden ständig körpereigene organische Stoffe aufgebaut. Diesen Vorgang bezeichnet man als Assimilation.
Die heterotrophe Assimilation läuft in den Zellen der Menschen, Tiere und Pilze ab.
Ein Mitochondrium besteht aus einer doppelten Membranschicht. Das Innere der inneren Membran wird als Matrix bezeichnet.
Auch Chloroplasten besitzen eine doppelte Membranschicht. Der Raum außerhalb der Thylakoidmembranene heißt Stroma.
LösungPflanzen benötigen, genau wie wir, Energie für das Wachstum und auch für ihren Stoffwechsel. Zu ihrem Stoffwechsel gehört neben der Fotosynthese auch zum Beispiel die Atmung.
In den Zellen werden körpereigene organische Stoffe aufgebaut (= Assimilation) und organische Stoffe (= Dissimilation) abgebaut, um ihre Energie zu nutzen. Bei den Pflanzenzellen spricht man von der autotrophen Assimilation, da sie aus anorganischen Stoffen körpereigene organische Stoffe aufbauen können.
Die wichtigsten Zellorganellen in diesem Zusammenhang sind die Chloroplasten und Mitochondrien.
-
Belege, warum sich bei diesem Versuch nicht in allen Blättern Stärke nachweisen lässt.
TippsChlrophyll absorbiert vor allem Licht im langwelligen und kurzwelligen Bereich.
Die in der Lichtreaktion gebildeten Energie- und Reduktionsäquivalente werden dazu verwendet, das Kohlenstoffdioxid zu Glukose zu reduzieren. Läuft die Lichtreaktion nur gehemmt ab, fehlt die Energie für die Glukoseherstellung.
LösungChlorophyll absorbiert innerhalb des Spektrums vor allem rotes Licht (langwelliger Bereich) und blaues Licht (kurzwelliger Bereich). Unter der grünen Folie ist die Absorption gering. Hier können die Chlorophyll-Moleküle nur sehr schwach oder gar nicht angeregt werden. Aus diesem Grund findet in diesem Blatt keine Fotosynthese statt. Es kann somit auch kein ATP und $NADPH+H^+$ gebildet werden, somit verläuft auch die Dunkelreaktion nur sehr schwach.
Stärke ist ein Reservestoff der meisten Pflanzen und wird in den Blättern gespeichert. In Dunkelphasen wird der Stärkevorrat wieder abgebaut. Die Pflanzen können die Glukose auch aus den Blättern transportieren und zum Beispiel in der Wurzel als Stärke speichern. Das kennst du zum Beispiel von Kartoffel, deren Knollen sehr stärkehaltig sind.
-
Definiere die Begriffe Oxidation und Reduktion.
TippsBei der Oxidation wird die Oxidationszahl des Stoffes erhöht.
Bei der Reduktion wird die Oxidationszahl des Stoffes kleiner.
LösungDie Fotosynthese stellt eine Redoxreaktion dar.
Bei einer Oxidation erfolgt eine Elektronenabgabe und bei der Reduktion eine Elektronenaufnahme. Ein Stoff der Elektronen abgibt, bezeichnet man als Elektronendonator oder auch Reduktionsmittel. Er wird durch die Oxidation zum Elektronenakzeptor (Oxidationsmittel), der Elektronen aufnehmen kann.
Bei der Fotosynthese wird Kohlenstoffdioxid zu Kohlenstoff reduziert und Sauerstoff aus dem Wasser oxidiert.
-
Erläutere den Calvin-Zyklus.
TippsPflanzen, die Glycerinsäure als 1.Zwischenprodukt in der Fixierungsphase bilden, nennt man C3-Pflanzen.
Aus der Reduktionsphase geht Glucose hervor.
Der Kohlenstoffdioxid Akzeptor wird in der Regenerationsphase wieder hergestellt.
LösungDie Fotosynthese gliedert sich in die Licht- und Dunkelreaktion.
Der Calvin-Zyklus bzw. die Dunkelreaktion kann ohne Licht ablaufen. Der Ort ist dieses Mal das Stroma der Chloroplasten. Die in der Lichtreaktion freigesetzten Energie- und Reduktionsäquivalente werden genutzt, um Glucose zu bilden.
Kohlenstoff wird an Ribulose-1,5-bisphosphat gebunden. Dieses Enzym ist vielfach in den grünen Blättern enthalten. Die entstehende instabile Zwischenverbindung zerfällt rasch in 2 Moleküle Glycerinsäure-3-phosphat. Alle Pflanzen, die Glycerinsäure als 1.Zwischenprodukt bilden, nennt man C3-Pflanzen. Dieses Molekül wird nun zu Glycerinaldehyd-3-phosphat reduziert. Dafür liefert ATP die Energie und NADPH+H die Elektronen und Protonen. Es entsteht nun durch Abspaltung der Phosphatgruppe Glucose. Daraus kann später Stärke gebildet werden. Zum Schluss kommt es zur Regeneration des Ribulose-1,5-bisphosphats und der Kreislauf ist wieder geschlossen.
Fotosynthese – Erstellen und Ausgleichen der Reaktionsgleichung
Fotosynthese – Verwertung der Fotosyntheseprodukte in der Pflanze
Fotosynthese – C4- und CAM-Pflanzen
Fotosynthese – Bedeutung und Lichtaufnahme der Pflanzen
Fotosynthese – Energiegewinnung der lichtabhängigen Reaktion
Fotosynthese – Experimentelle Erforschung der Fotosynthesereaktion
Chemosynthese – autotrophe Bakterien
Chlorophyll – Aufbau und Absorptionsspektrum
8'905
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'232
Lernvideos
35'802
Übungen
32'564
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Biologie
- Dna Aufbau
- Organe Mensch
- Meiose
- Pflanzenzelle
- Blüte Aufbau
- Feldmaus
- Chloroplasten
- Chlorophyll
- Rna
- Chromosomen
- Rudimentäre Organe
- Wirbeltiere Merkmale
- Mitose
- Seehund
- Modifikation Biologie
- Bäume Bestimmen
- Metamorphose
- Synapse
- Synapse Aufbau und Funktion
- Ökosystem
- Amöbe
- Blobfisch
- Endoplasmatisches Retikulum
- RGT Regel
- Fotosynthese
- Nahrungskette Und Nahrungsnetz
- Das Rind Steckbrief
- Ökologische Nische
- Zentrales Und Vegetatives Nervensystem
- Glykolyse
- Mutation Und Selektion
- Quellung und Keimung
- Hecht Steckbrief
- Rückenmark
- Karpfen Steckbrief
- Anglerfisch Steckbrief
- Skelett Mensch
- Sinnesorgane
- Geschmackssinn
- Analoge Organe
- Säugetiere
- Vermehrung Von Viren
- Organisationsstufen
- Symbiose
- Mikroorganismen
- Wie entsteht Blut einfach erklärt
- Vererbung Blutgruppen
- Blutgruppen einfach erklärt
- Sprossachse
- Tierzelle Aufbau
Ich habe das Thema jetzt endlich verstanden!
Unfassbar gut erklärt! Und das in nur knapp 8 Minuten. Weiter so!
War vieeel zu ausführlich und hab nix verstanden
Hallo Familie 64,
das ist richtig. Vielen Dank für den Hinweis!
Der Fehler wurde umgehend korrigiert.
Beste Grüße aus der Redaktion
In der dritten Aufgabe zum Video ist ein Fehler. Dort steht, dass der Calvin-Zyklus in der Matrix der Mitochondrien ablaufen würde. Aber der Calvin-Zyklus ist ja mit der Dunkelreaktion gleichzusetzen und läuft somit im Stroma der Chloroplasten ab. Wohingegen der Citrat-Zyklus in der Matrix der Mitochondrien abläuft.